HYPER-ALGEBRAIC INVARIANTS OF p-ADIC ALGEBRAIC
NUMBERS
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ABSTRACT. Let p > 3 be a prime. In this article, we introduce two arithmetic
invariants (hyper-tame indexes and hyper-inertia indexes) of the hyper-algebraic
elements in the p-adic Mal’cev-Neumann field L. For p-adic algebraic numbers
that generate abelian extensions and tamely ramified extensions of Qp, we
calculate their hyper-tame indexes and hyper-inertia indexes.
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1. INTRODUCTION

Let p > 3 be a prime throughout this article. In , the p-adic Mal’cev-
Neumann field L,, := W (F,)((p?)) is constructed and a necessary condition for an
element in IL,, to be algebraic over @, is given. More precisely, an element f € L,
can be written uniquely in the form

f = Z[Tq]pq’

q€Q

with 7, € F, and supp(f) = {¢ € Q: r, # 0} a well-ordered subset of Q; thus,
an element f=>" qe(@[rq} p? € L, is completely determined by its support and its
coefficients. As stated in Corollary 8], if f is algebraic, then it satisfies the
following conditions:

(1) there exists a positive integer N that supp(f) C +Z[1/p];

(2) there exists a positive integer k such that r, € F,« for all ¢ € supp(f).
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An element f € L, satisfying the above conditions is called hyper-algebraic. The set
Lga of hyper-algebraic elements in L, forms an algebraically closed field containing
Qp. As a result, all p-adic algebraic numbers are hyper-algebraic, i.e. @p - L;a.

The first result of this article is a clarification of relations among the fields IL;‘a,
Q, and Cp:

Theorem A (cf. [Theorem 3.3)). The field ]Lga is strictly larger than @p and it is
neither complete nor a subfield of C,,.

This leads us to study the behavior of p-adic algebraic numbers in ]L;‘a. We
introduce two invariants of a hyper-algebraic element : hyper-tame index Ty (i.e.the
minimal positive integer e such that supp(d) C 1Z[1/p]) and hyper-inertia index Fy
(i.e. the minimal positive integer f such that r, € F,; for all ¢ € supp(f)), and we
use them to describe abelian extensions and tamely ramified extensions of Q,.

Theorem B (cf. . Let a € @p be a p-adic algebraic number with
Qp(@)/Qyp an abelian extension of degree n. Denote by fy («) the local conductor of
Qp(a) over Q,. Then

(1) If fg,(a) =0, then T, =1 and §o = n.

(2) If fg,(a) = 1, then T, [ p—1 and

lem(2,n), if fo, () = 1,2;
“ 1CH1(2 . prp<a)717 n)a Zf pr(a) > 3. .

Remark 1.1. For o € L, we denote by [Cﬁ (a)] the coefficient of index p%l of
the canonical expansion of a. Based on our computation of the truncated expansion
of G (cf. , we state a comjecture on Cﬁ (Cpn): for any integer
n > 2 and p"-th primitive root of unity Cpn, there exists another p"-th primitive
root of unity C,n with Cﬁ (o) = 0 such that (pn /G is @ p"~L-th root of unity (not
necessarily primitive).

If this conjecture holds, then §¢,. = 2 for every n > 2, and consequently §a
divides lem(2,n) for all ramified cases in the above theorem. See the proof of

Proposition 4.1| for more details. Note that this conjecture is true when n =2 (cf.
Lemma 4.5).

Definition 1.2. Let K be a finite extension of Q.

(1) Denote by fx the inertia degree of K over Q,.

(2) Denote by e the ramification index of K over Q, and by ¢% the tame
ramification index of K over Q, respectively, i.e. the prime-to-p part of
CK .

(8) For any p-adic algebraic number a, we denote by fo (resp. eq, ¢,) for fo, (a)

(resp. eq,(a) e(t@p(a)).

In [Lamg86|, Lampert remarks that if Q,(a) is tamely ramified over Q,, then
supp(«) is contained in Q%Z. The following theorem refines this result:

Theorem C (cf. [Theorem 4.7). Let o € Lga be a hyper-algebraic element in L,,.
Then Q,(«) is tamely ramified over Q, if and only if supp(a) C S—LZ. In this
situation, we have T = ¢Y), fo | Ta and Fo | ordea(pfa_l)p.
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2. PRELIMIARIES ON VALUED FIELDS

2.1. Maximally complete fields and Mal’cev-Neumann fields. The main
objective of this subsection is to justify the notion of immediate maximally complete
of a valued field, in particular, of the field C, of p-adic complex numbers.

Definition 2.1. Let (F,v) be a valued field.

(1) Say (E,w) is an immediate extension of F if it is an extansion of (F,v)
and has the same value group and residue field as F'.
(2) Say (F,v) is maxzimally complete if it has no proper immediate extension.

Unsurprisingly, one has the following result

Proposition 2.2 ([Po093, Proposition 6]).
(1) Mazimally complete fields are complete.
(2) If a maximally complete field has divisible value group and algebraically
closed residue field, then itself is algebraically closed.

Remark 2.3.

(1) The proof of this Proposition, which is due to MacLane, is not effective, i.e.
it does not give an algorithm to construct a root of a given polynomial over
F.

(2) Kaplansky showed in [Kap42, Section 5] that there exist valued fields with
two tmmediate maximally complete extensions that are not isomorphic as

fields.
Definition 2.4. Let F' be a valued field and (Eq,w1), (Ea,ws) be two extension of
F.

(1) Say E7 and E> are analytically equivalent if there exists a F-isomorphism

of field i: Ey — Es such that wa(i(z)) = wy(x) for any x € Ey.
(2) Say Ey embeds into Es if By is analytically equivalent to a subfield of Es.
Theorem 2.5 ([Poo93 Corollary 6]). Every valued field F has an immediate
mazximally complete extension. If F' has divisible value group and algebraically closed

residue field, then the immediate maximally complete extension is unique up to
analytic equivalence.

By a standard way to produce maximally complete fields is to
consider the Mal’cev-Neumann fields which we recall in the following.

Definition 2.6 (|Poo93, Section 3]). Let R be a commutative ring and G be an
ordered group.

(1) For any f € Homge (G, R), we define the support of f to be
supp(f) = {g € G: f(g) # 0}.

(2) Define the set of Mal’cev-Neumann series over R with value group G to
be

R(G)) == {f € Homsget (G, R): supp(f) is well-ordered}.

By introducing a formal variable t, elements in R((G)) will also be written
as deG rgt9, where rg € R for all g € G.
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Proposition 2.7 ([Poo93, Lemma 1, Corollary 2]). Let R be a commutative ring
and G be an ordered group.

(1) With identity 1-t° and addition as well as multiplication given by
}:bﬂw+§:%ﬁ::§:mg+bﬂﬁ,E:%ﬁ-E:%ﬁ::§:<§:awww>t
geG geG geG geG geG g€G \heqG

R(@)) forms a commutative ring.
(2) If R is a field, then so does R((G)). Moreover, with the map

minsupp(f), iff#0
0, if f=0

R((G)) becomes a valued field with value group G and residue field R.

v: R(G) — GU{co}, fr— {

Note that char R((G)) = char R, we call R((G)) the equal-characteristic Mal’cev-
Neumann field over R with value group G, also denoted as R((t“)) with respect
to the formal variable ¢.

Theorem 2.8 ([Poo93| Proposition 3, Corollary 3, Proposition 5]). Let k be a
perfect field of characteristic p and G be an ordered group containing Z as a subgroup.
Besides that, let

N = Z rgt? € W(k)(t9): for every g € G, ng+np" =0,,
geG nez
where W (k) is the ring of Witt vectors of k. Then

(1) N is a mazimal ideal of W (k)(t%)), which makes W (k)(p%)) = W (k)(t%)/N
a ﬁel(ﬂ called the p-adic Mal’cev-Neumann field.
(2) Every element in W(k)((p®)) can be uniquely (and formally) written as

Z [rglp?,
geG

where g € k for all g € G and [-]: k — W (k) is the Teichmiiller lift.
(3) For f =73 ,cqlrglp?, define the support of f to be

supp(f) = {g € G: ry # 0}.
Then the map

minsupp(f), if f#0
00, if f=0

makes W (k)(G)/N a mized-characteristic valued field with value group G
and residue field k.

v: WE)(G)/N — GU{oc}, [ {

Theorem 2.9 ([Po093, Theorem 1]). The equal-characteristic and p-adic Mal’cev-
Neumann fields are mazimally complete.

Theorem 2.10 ([Po093, Corollary 5, Corollary 6]). Let F be a valued field with
value group G and residue field k with chark = 0 or p. Let G be a divisible group
that contains G.

Untuitively speaking, W (k)((p®)) is obtained by replacing the formal variable ¢ of elements in
W (k)(t©)) by the prime p.
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(1) The field F' embeds into the Mal’cev-Neumann field
{ ke ((t9)), if char F' = char k;

W (k&) (p“), if char F # chark;

where k:ilg is an algebraic closure of k.
(2) If G = G and k = k&, then the Mal’cev-Neumann field

E(t%), if char F' = char k;
W(k)(p%)), if char F # chark;

is the unique (up to analytic equivalence) immediate mazimally complete

extension of F (cf. .

Example 2.11. It is well-known that C, is not mazimally complete (cf. [BS18,
Theorem 4.8, Theorem 6.7]). Since it has value group Q and residue field Fp, we can
apply|[Theorem 2.10 (2) to C,, which gives its unique immediate mazimally complete
extension

Ly = W(F,)(»°)-

By applying|Proposition 2.2|to L,,, one knows that L, is complete and algebraically
closed. Moreover, one can show that L, is much larger than C,:

Lemma 2.12 (|Po093, Corollary 9]). The field L, has transcendence degree 2%
over C,.

2.2. Basic properties of L,,. Compared to the unsatisfactoriness mentioned in
Remark 2.3 (1)} Kedlaya provedm the algebraic closeness of IL,, by using a transfinite
Newton algorithm as following;:

For a non-constant polynomial P(T") = > an—;T* € L,[T], denote by Sewt (P)
the Newton polygon of P, i.e. the lower boundary of the convex hull of the set of
points (i,v,(a;)) for i = 0,1,--- ,n. We write sk, for the slope of the segment of
Newt (P) with the largest slope and mZ  the left endpoint of this segment. Besides
that, call

P
N=Mpyax

Resp(T) = D Copfan) b tnmbo,—k) (@n—t)T
k=0

k

the residue polynomial of P, where for any s € Q, the map Cy: L, — F, is given

by quQ[Cq}pq — Cs-
We extracted Kedlaya’s proof into the following pseudo-code:

Algorithm 1 transfinite Newton algorithm for L,

INPUT: A non-constant polynomial P(T) € L,[T]
OUTPUT: A root of P(T) in L,
r+ 0,9(T) + P(T) > We denote the coefficient of 7% in ® as b,,_;.
while ®(0) # 0 do > This loop runs transfinitely.
¢ < any root of Resg(T) in IF‘p

r+ 71+ - pimax

O(T) < B(T + [c] - p¥max)
end while
return r

2His proof is motivated by the work of Lampert (cf. [Lam86)).
3Actually Kedlaya’s proof can be adapted to any Mal’cev-Neumann field (equal-characteristic
or p-adic) with divisible value group and algebraically closed residue field.
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We refer to [WY21] for a full explanation of this algorithm.

Let r = Y [C]p"™ € L,, with ordinal w runs through the well-ordered set
supp(r), be a root of P(T) given by the above algorithm. For the convenience of later
discussion, we call r,, = ZKW[@]P’C‘” the w-th approximation of r, P, = P(T + )
the w-th approximation polynomial and Resp, (T') the w-th residue polynomial.

Example 2.13 ([WY21; [WY23|). For integer n > 1, denote by (pn a p™-th root of
unity i Cp.
(1) If n=1, then there exist a p-th root of unity, whose expansion in Ly, is given
by

o0
CP = Z[Ck]pﬁa
i=k
where ci, € Fp2.
(2) If n > 2, then there exists a p™-th root of unity, whose (non-canonical)
expansion in L, is partially given by

p—1 (_l)n(k—i-l)

R (-nmk e et (S
G =2 g BmoP T 4 Y Gy e YT
’ ’ l=n

k=0 k=0

p—1 n(k+1) k
(—1)n [ A R~
R () e

k=1 =1

2
Lo D 3 ~1/p' (_1)n 3 T e iy
+§C2(p_1)pp 2(p—1) <Zp p +T<2(p—1)pp b Iy

l=n

+ -+ terms with higher valuation.

3. FIELD OF HYPER-ALGEBRAIC ELEMENTS IN L,

3.1. Hyper-algebraic elements. A necessary condition for an element in L, to
be algebraic over Q, has already been given by Poonen (cf. [Po093|), following
a remark from Lampert (cf. [Lam86]). Poonen’s condition leads to the following
definition of hyper-algebraic element in L,,.

Definition 3.1. We call an element f =5
satisfies:

gcolralp? € Ly hyper-algebraic, if it

(1) there exists a positive integer N such that supp(f) C +Z[1/p];
(2) there exists a positive integer k such that rq € Fpe for all ¢ € supp(f).

Denote by Lga the set of all hyper-algebraic elements in L.

Proposition 3.2 (Lampert, Poonen). The set Lga forms an algebraically closed field.
As a consequence, all p-adic algebraic numbers are hyper-algebraic, i.e. @p - IL];",

Theorem 3.3. The field ]L;;a is strictly larger than @p, and it is neither complete
nor a subfield in C,.

Proof. Consider the sequence (ZZ:1 ph—1/ k)n>1 in @p - Lg", which clearly con-
k—1/k

verges in C,. However, its limit >, p is not hyper-algebraic in L, as the
p-power-free part of the denominators of elements of its support is unbounded. This
shows that ILL“1 is not complete and does not contain C,.

To prove it is not contained in C,, we can consider the following element of ]L;‘a:

> |vapk)

a:Zp [
k=1
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If o € C,,, then there exists a p-adic algebraic number 8 € Q, that v,(a — ) > 2.
This shows that the canonical expansion of 8 in ]Lga has the form

X vapk]

8= Zp »* 4 terms with exponent greater than 2---
k=1

Thus supp(3) has accumulation value v/2. However this is impossible: Lampert
showed in [Lam86| Theorem 2] that the set

A = {a € Ly|{accumulation value of supp(a)} C Q}

is an algebraically closed field. Since the support of every p-adic rational number
lies in Z C Q, Q, is a subfield of A. On the other hand, 8 does not belong to A.
This is a contradiction. O

3.2. Hyper-tame index and hyper-inertia index.

Definition 3.4. Let 6 = ZqEQ[rq]pq € Lga be a hyper-algebraic element in L.

(1) Denote by Ty the minimal positive integer e such that supp(#) € LZ[1/p].
We call it the hyper-tame index of 6.

(2) Denote by Fo the minimal positive integer f such that r, € F,s for all
q € supp(0). We call it the hyper-inertia index of 0.

We call them the hyper-algebraic invariants of 6.

The following lemma collects several basic properties of the hyper-tame and
hyper-inertia indices:

Lemma 3.5. Let o, 3 € ]Lga be two hyper-algebraic elements in L,. Then one has

(1) Tats | lcm(iaaiﬁ)7 Sa+p | 1cm($a,35).
(2) Top | lem(ZTo, %5), Fa-p | lem(Fa, §p). In particular if o is algebraic over

Qp and Qp(«) is unramified over Qp, then To.p | Ty and Fo- | lem(fo, §5)-
(3) ‘zl/a = rljOé; Sl/a = SO{ fO’f’ « 7é 0.

Proof. The first and the second assertions follow from the definition of addition and
multiplication on L. In particular if Q,(«) is unramified over Q,, then Q,(a) =
Frac W (F,s. ). As a result, every element in Q,(c) has the form >, [G]p",
where (i € Fpia for all . This shows that T, =1 and §o = fa-

For the third assertion, the result is trivial when |supp(a)| = 1, thus we only
focus on the case of |supp(a)| > 2. Write a = [¢]p"r(®) — A with v,(A4) > v,(a).
Then ¢ € Fpsa, Ta | T and §a | §o. The result follows from the expansion

ot = [ S (1 - 4)

k=0

where

,Up([cfl]pfvp(a) . A) > O7 T[C,l]p—vp(a)_A | Sa and S[Cfl]p_”P(“)-A ‘ S‘Q.

Corollary 3.6. For any positive integer e, f > 1, the set
Li*(e, f) ={a € L}*: Fa | f, Tale}
is a subfield of Ly*. In particular, if oo € Ly*(e, f), then Qy(c) C L*(Ta, Fa)-

Proposition 3.7. For every p-adic algebraic number «, the mazimal prime divisor of
its hyper-tame index T, (resp. hyper-inertia index Fo) does not exceed [Qp(ar): Qp].



HYPER-ALGEBRAIC INVARIANTS OF p-ADIC ALGEBRAIC NUMBERS 8

Proof. Let n = [Qp(c): Q,]. Let
R, = {r € N: the prime divisor of r < n}

1 11 1
S S [ LR )

and

k
Then implies that the set

Lga(n) = {04 S ]Ll;a5 Ta €&n,8a € Rn}

is a subfield of ILEa. Denote by Min, (7') the minimal polynomial of a over Q, C
]Lga(n). Since the denominator of the maximal slope (resp. the degree of the residue
polynomial) in each step of the Newton algorithm is bounded by n, one can show
by transfinite induction that there exists at least one root § of Min, (7") that lies in
L2*(n). By replacing Min, (T') with Min, (T))/(T — f8) inductively, one knows that
a € LE*(n). The result follows. O

4. p-ADIC ALGEBRAIC NUMBERS IN ]L;;a

The objective of this section is to investigate the hyper-algebraic invariants of
p-adic algebraic numbers that generate abelian extensions as well as tamely ramified
extensions over Q.

4.1. Hyper-algebraic invariants of abelian extensions. Let (,» be the p"-th

root of unity in then it is easy to see that

a:Cp a:Cpn (TLZQ)
Sa 2 >2
Sa P—l Zp_].

The following proposition gives a precise form of the above observations:

Proposition 4.1. For any integer n > 1 and any p™-th primitive root of unity Cyn,
we have T¢,,, =p—1 and

= 2 ifn=12;
Sepm divides 2 - p" =2, if n > 3.
The key to prove this proposition is the following lemma:

Lemma 4.2. Let o € ]Lga with vy(a)) = 0. Then there exists a p-th root B of o in
Lga(‘la,p -Fa). In particular, if Cﬁ (8) =0, then S belongs to }Lga(Ia,SQ).

Proof. We apply the transfinite Newton algorithm on the equation 7?7 — a = 0 to get
aroot 3. Set B =3"_[cu] - p*+, where the ordinal w run through the well-ordered

set supp(f). Recall that for any ordinal w, let 8, = Zp<w[cp] - pFe and
p—1

(1) = (T+ A —a=T7+ 3 (Z)Bii TR BE
k=1

The first step is easy: since Sy = 0 and ®o(T) = TP — «, the Newton polygon
NMewt (Pg) consists of a single horizontal segment with residue polynomial given by

Res% (T) =TP — CQ(Oé) S Fpsa [T],
which splits in F,s.. This shows that ; € ]Lga(‘la,&l) and v,(f1) = 0.



HYPER-ALGEBRAIC INVARIANTS OF p-ADIC ALGEBRAIC NUMBERS 9

For any w > 1, since v,(8,) = v,(81) = 0, we know that v,((Y)B%) = 1 for
all k =1,2,---,p— 1. This implies that Jews(P,,) is determined by the point
(p, vp(BF, — ) for every w > 1.

Since k., € Q increases monotonically with respect to the ordinal w, we set wg to
be the minimal ordinal p that satisfies k, > p%l.

(1) Suppose w < wy and B, € ]L;‘a(‘fa,ga) for every p < w. Then Sewt (D)

consists of a single segment with slope k,, = sbs = %vp(ﬁf) —a) < p—il.
Ly vp (B — @)

1 2 p—1 P
FIGURE 4.1. SMewt(D,), 1 <w < wp

Since BB — o € Lp*(Tq, Fa) by [Corollary 3.6, we know that
1
vp(ﬁf; —a) € supp(f —a) C ?Z[l/p}

This implies that &, = %vp(ﬁf, — «) also belongs to iZ[l/p]. The residue
polynomial of ®,,(T) is given by

RGSq)W (T) =TP + Cvp(ﬁf,fa)(ﬁg — 04),

where C,, (gr_q)(BL — @) € Fps.. Thus any root of this residue polynomial
lies in F,s.. This shows that 3,41 € Lga(fa,ga). Since the case of
limit ordinals is self-indicating, we can show by transfinite induction that
Bw € ]Lga(‘Za,Sa) for all w < wy.

(2) Now we deal with w = wg + 1.
L

(a) If kwy = Smax = p%l, then Mewt (D,,) consists of a single segment
with slope equals to
1 1 1
kwo = F = ];Up(ﬂgo - CY) S EZ[I/I)}

Since this segment contains the point (p — 1, 1), one knows that
RethO (T) =77 + Co(ﬁwO)PflT —+ Cvp(,@f;o—a) (650 — Oz) S IFp‘EQ [T],

whose root lies in [Fp-5. . In this case, one has B,,4+1 € LE‘“(TQ,p Fa)
(b) If ky, = Smsd > p%l, then Mews (P, ) consists of two segments, where

the vertexes of the segment with maximal slope is given by (p — 1,1)
and (p,v,(BE, — )). Thus,
_ Up(/Bf)(]_a)_l

1
kuw, = e € EZU/Z)]
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and one has
Resq’wo (T) = Co (ﬁwo )p_lT + Cvp(ﬁgofa) (650 - Oé),

whose root lies in )5, . In this case, one has 8,,11 € ]L;‘a(‘i'a, Fa)-

up(B5 — ) 1
_p_ |
p—1
11 1
1 2 p—1 D 12 p—1 D
FIGURE FIGURE
4.2. NMewt (Dy,), 4.3. Newt (Dy, ),
if koo = 527 if koo > 221

(3) For the case of w > wp, we have k, > %1 With the same calculation as
above, one can prove by transfinite induction that for any ordinal w > wy+1,

Buw € L};a(ga’ 33w0+1)'
The result follows. g

Additionally, we need the following auxiliary lemma:

Lemma 4.3. For any p>-th primitive root of unity Cp2, there exists another p2-th
primitive root of unity C,’,z and a p-th root of unity . (not necessarily primitive)
that (2 = CI/JQ <& and C% (CI/)Q) =0.

o=

Proof. Fix a 2(p — 1)-th primitive root of unity 52(1,_1). Let

W= {7’”1 ke N<p_1} CFe.

2(p—1)-
By choosing (3(,—1) in the expansion of the p?-th primitive root of unity given
by [Example 2.13| (see also [WY21, Theorem 3.3]) in W, we get p — 1 different
p>-th primitive roots of unity ro,r1,- -+ ,7,_2, satisfying C - (rg) = 22(’“;711) and
p(p—
C_1_(ri) =0 for every k € Nep_1.
=

Similarly, for every ¢ € {0} UW, there exists a p-th root of unity (not necessarily

primitive) &, that v, (EC —1—1(] pﬁ) > p%l. Thus for any k£ € N.,_; and

¢ € {0YUW, 7+, is a p~th primitive root of unity, satisfying C__ 1 (rj-&.) = (21

p(p—1) 2(p—1)
and C_1_ (r), - £€.) = c. This enumerates all p(p — 1) p2-th primitive roots of unity.
The result follows. O

Proof of [Proposition 4.1 The case of n = 1 follows immediately from [WY21]
Proposition 3.4].

Let (2 be any p?-th primitive root of unity. By there exists another
p?-th primitive root of unity C;,Q and a p-th root of unity £, (not necessarily primitive)
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that Cﬁ = (2 & and Cﬁ“{ﬂ) = 0. By applying we have
ha ha
C;z ELp (3(4;2);;,5@;2);;):1141, (p—1,2).

Since ¢ € Lb*(p — 1,2), we know that (,2 € LE*(p — 1,2). On the other hand,
by Theorem 3.3|, one has SCPQ >p—1and SCPQ > 2. This implies that
‘ICPQ =Dp— 1 and SCPZ = 2.

When n > 3, we can set a = ((yn)" in inductively to get the result.
One should notice that when n > 3, we no longer know if the analog of
holds for (,». Thus the hyper-inertia index is multiplied by p when n increases by
1. U

Corollary 4.4. For any positive integer m = r - p*»(™) with ged(r,p) = 1 and any
m-th primitive root of unity (,,, one has

(1) If vy(m) =0, then T, =1 and §¢,, = ord, p.

(2) If vp(m) > 1, then T, | p—1 and

3 lem(2, ord, p), if vp(m) =1,2;
Cm lcm(2 cpre(m) =1 ord, p)7 if vp(m) > 3.
Proof. Tt suffices to note that any r-th root of unity lies in Fpora, ». O

With the power of the local Kronecker-Weber theorem, we can generalize this
result to those p-adic algebraic numbers that generate abelian extensions over Q,:

Theorem 4.5. Let a € Q, be a p-adic algebraic number with Q,(a)/Q, an abelian
extension of degree n. Denote by fy (o) the local conductor of Qp(a) over Q,. Then

(1) If fg, (o) =0, then T, =1 and Fo = n.
(2) If fg,(a) > 1, then T | p— 1 and

lem(2,n), if fo, () = 1,2;
“ 1CH1(2 . prP<Q)717 n)a va pr(Oé) z 3.

To prove this theorem, the following effective form of the local Kronecker-Weber
theorem is needed:

Lemma 4.6. Let K/Q, be an abelian extension of degree n with conductor fx and
let m = (p" — 1)pf%. Then K C Qp(Cn).

Proof. By |Guil8, Lemma 4.11] and its proof, there exists s > 1 that
(p*) x UQZK) - NK/QPKX-

It follows that K C Q, (C(psil)pr) by the proof of |Guil8, Theorem 13.27]. On the

other hand, we have K C Q, (C(p,_l)pvp(mu) by [KS22, Theorem 3.1]. Since

Qp (C(ps—l)pr> n Qp (C(p"—l)p”p(">+2) g Qp(Cm)a
we have K C Qp(¢m)- O
Proof of[Theorem 7.3, Let m = (p" — 1)pf@. By we know that

(GRS Qp(Cm)
Note ord,»_1 p = n. By we know that

T o ]., if pr(a) = 0;
T p=1, i g > 1
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and
m it fg, (@) = 0;
., = lem(2,n), if fo, () = 1,2;
divides lem(2 o~ n ), if fo, (o) > 3.
Since o € Q,(¢m) € Lp*(%e,,., B¢, ) the result follows. O

4.2. Criterion for tamely ramified extensions.

Theorem 4.7. Let a € L;a be a hyper-algebraic element in L,. Then Q,(«) is
tamely ramified over Q, if and only if supp(a) C %Z, In this situation, we have
(sa = eg, fa | Sa and 304 | ordeg(pfafl)p.

The proof of this theorem relies on the following lemma:
Lemma 4.8. Let a € @p be a p-adic algebraic number with Q,(a) tamely ramified
over Q. Then there exist an element § € Fpe, with

Cc = ordeg(pfa_l)p S fo/ . 23,
that
1
Qp(a) = Qp([ﬂ 'pc‘*)-

Proof. The proof is nothing but a slight improvement of |htt].

Let Ok be the ring of integer of K := Q,(«) with a uniformizer 7x. Since K/Q,

t
is tamely ramified, there exists a unit u in O} that ﬁ;g = p - u. By the structure
theorem of CDVR, one may write u € [(] + Tk Ok, with ( € F
Since ged(el,, p) = 1 and u=![(] — 1 € T Of, the series

WYY = (14 (¢ - ) =Y (1/;&> (w ¢ - 1)

k=0

pfa .

converges in Oy . Thus the element
TK * u_l/ea [C]l/ea = pl/ea . [Cl/ea]

is also a uniformizer of Og. Take £ := Cl/eﬁx, then £ is a root of the polynomial
f(T) = T«#'*=1) _ 1 ¢ F,[T], which belongs to the splitting field F,e of f(T).
Since the degree of the minimal polynomial of § over F . is at most e!,, one knows
that ordeg(pfa_l) P < fa . BEX. [l

Proof of [Theorem 4.7 If supp(a) C iZ, we can write o = Z:;o_oo[rk] . pTa,
where 74, € Fp5, for all k. Thus « lies in Q5. (p%), where Q5. = Frac W (Fs. )
is the unique unramified extension of Q, with residue field F,s.. This shows that
Qp () is tamely ramified over Q,.

Conversely, if Q,(a)/Q, is tamely ramified, then we have Q,(a) = Qp<[§] pi>
by where § € Fye with ¢ = ord,: (5o —1)p. This shows that supp(a) C
iZ, implying the elements in supp(«) has non-negative p-adic valuation. Thus
supp(a) € Zgyy N iZ[l/p] = ‘I—laZ.

Notice that the inclusion a € Q,z. (pi> implies ¢!, | T, and fo | Fo- On

1

the other hand, the equality Q,(a) = Qp([f] ~p‘3) gives us the inclusion a €

1

Qp([g] .pa) C Lp*(e!,, ¢), showing that T, | ¢, Fo | c and ¢}, | Ty O
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4.3. Heuristic discussion for general extensions. We have seen in
[tion 3.7]and [Theorem 4.5|that given a p-adic algebraic number «, its hyper-algebraic
invariants T, and §, are closely related to its arithmetic invariants, i.e. [Qp(a): Qp],
¢!, and fg,(a)- These invariants can be determined by its minimal polynomial over
Qp. However, the minimal polynomial is not enough to determine the exact value of

T, and F, in general. For example, the elements oy = p*/? and ay = p'/?- (Cp shares
the same minimal polynomial 77 — p over Q, but T, = §o, =1 while T,, =p—1
and o, — 2 by
A small-scale numerical experiment indicates the following heuristic patterns:
(1) The hyper-inertia index §, always divides [Q,(a): Qp].
(2) If f(T) € Q[T is irreducible, denote by ¢! the tame ramification index of
Qp([T]/ f(T) over Qp. Then for any root a of f, T, always divides ¢};. There
exists at least one root g of f that Tg = e}.
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