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by

Zhe Li, Shanwen Wang & Zhiqi Zhu

Abstract. — In this note, we make explicit the correspondence between Harish-
Chandra parameters and Langlands-Vogan parameters for symplectic groups and
orthogonal groups of equal rank over reals. As an application, we reformulate Moeglin’s
results [18] and Paul’s work [21] on the Howe correspondence for symplectic-orthogonal
dual pairs using Langlands-Vogan parameters.
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1. Introduction

Throughout this paper, we fix an additive character ¢ : R — C*, set I' = {1, 0}
the Galois group of C/R and by a representation of a real reductive group G, we mean
a smooth Fréchet representation of moderate growth.

Given a real reductive group G, let g be the Lie algebra of G and we fix a maximal
compact subgroup K of G. Wallach [29], Chapter 11] introduced an equivalence
between the category of smooth Fréchet representations of moderate growth of G and
the category of admissible finitely generated (g, K)-modules. Since any such (g, K)-
module can be parametrized by Harish-Chandra parameters, so are the representations
of G.

Let (V,(+,-)) be a 2n-dimensional real vector space equipped with a non-degenerate
symplectic bilinear form and (V' (-,-)) be a (2n + 2)-dimensional real vector space
equipped with a symmetric bilinear form. Let G = Sp(V) and G’ = O(Vl) be the
isometry groups of V' and V' respectively. Moreover, let V=V ® % equipped with the
symplectic form (-,-) ® (-, ) and we denote by §1\)(V) the metaplectic group associated
to V. The pair (G,G’) is a reductive dual pair in the symplectic group Sp(V) ([I7,
§11.1]), and there is a natural map

L:Sp(V) x O(V') — Sp(V),
which can be lifted to a homomorphis
(1.1) Ly 2 Sp(V) x O(V') — Sp(V).
For the dual pair (G,G’), Roger Howe [14] introduced the theta correspondence
between the representations of G' and the representations of G’. His construction
used the Weil representation w, of Sp(V)(cf. [17, §I.1]), which is an extension of

the oscillating representation of the Heisenberg group H (V) =V @ R, depending on
the choice of 1. If 7 and 7 are irreducible admissible representations of G and G’

(DSuch a splitting of gE(V) — Sp(V) is not unique, which depends on some auxiliary data described

in [10} §3.2].
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respectively, we say 7w and 7 correspond if TN isa quotient of the Weil representation
wy, of §1\)(V), restricted to G x G’, denoted by ev’,v(w/) =7 and Oy, (1) = . IV
has signature (p, ¢), we will replace the notation 0y by 6, 4.

Assume (p, q) is the signature of the symmetric bilinear form (-,-). Moeglin [18]
computed a significant part of the full correspondence where p and ¢ are both even.
Later on, using the Harish-Chandra parameter, Paul [21], Theorem 15] gave a complete
and explicit description of the correspondence by filling in the Casith p and ¢q odd.
Their description of the explicit theta correspondence for the symplectic-orthogonal
dual pairs uses Harish-Chandra parameters.

On the other hand, we can parametrize the representations of real reductive groups
via Langlands-Vogan parameters, which is a more direct parametrization compared
to Harish-Chandra parametrization. The goal of this paper is to translate Moeglin’s
results and Paul’s results for the limit of discrete series representations via Langlands-
Vogan parameters of the smooth Fréchet representations of moderate growth, which
will serve as an input for our forthcoming paper on GGP conjecture for Fourier-Jacobi
case over reals. As a consequence, we also formulate such translation for tempered
representations.

We begin by giving a precise statement of the results (cf. Thm. and Thm. .

1.1. Langlands-Vogan parameters. — Let H = G or G'. We fix a pinning of the
complex dual group H?

Sled = (%a %7 {%a})7

where % is a Borel subgroup of H¢, .7, is a torus of 4, {2} is the set of root vectors
for the simple roots of .7, in #(cf. §2.1.3). Let Wg be the Weil group of R. The
Langlands dual group ©“H of H associated with the pinning Spla is the semi-direct
product H% x Wy, where the action of Wg on H? factors through the projection
pwe @ Wr — Gal(C/R) stabilizing Splya. We remark that ©“H only depends on
its inner class. A Langlands parameter (or L-parameter) of H is a continuous
morphism ¢ : Wr — “H satisfying the following two conditions:

1. pr o ¢ = ldyy,, where pg : LH — Wg;

2. the image of the restriction map Plox C* — H?% x C* consists of the elements

which is semi-simple in H?.

In particular, a Langlands parameter of H is called tempered if its image is bounded.

Recall that the irreducible representations of Wgx have dimension either 1 or 2 as
Wrg has an abelian subgroup of index 2.

(1) The 1-dimensional representations of Wg are the quasi-characters of Wb = R*,
which are of the form y. s(x) = sgn(z) 7 ||*, for £ € {1} and s € C.

(2)In this paper, we consider the equal rank case, which implies that p, g are both even.
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(2) The irreducible representations of Wg of dimension 2 are of the form

Wi
Pm,s = Ind(C}XTmsa

for Xm.s(z) = 2™+ (22)7™/2 . |2|% a quasi-character of C* with m € Z and s € C.
We will denote py,.0 by pm.
Thus, a Langlands parameter ¢ of H can be represented using its decomposition into
direct sum of irreducible representations of Wxg.

The complex dual group H? of H acts by conjugation on the set of Langlands
parameters of H. We denote by ®(H) the set of H%-conjugacy classes of the Langlands
parameters of H and by ®iemp(H) the set of conjugacy classes of the tempered
Langlands parameters. The classification theorem of Langlands says that there exists
a partition of the set II(H) of the equivalent classes of irreducible representations of
H:

nH) = [[ e H),
peP(H)
where II(¢, H)’s are finite sets of irreducible representations of H, called the L-packets
(or Langlands packets). This partition satisfies a number of properties and among
them, the most important ones for us are the followings:

1. all the elements of a L-packet admit the same infinitesimal character;
2. for the set Iiemp(H) of all tempered representations of H, we have

Htemp(H) = H H(SD7H)-
PEPsomp (H)

Suppose H is a real form of equal rank. For each Langlands parameter ¢ of H,
Vogan associated it to a finite set II(y) of irreducible representations of H with H
running over all pure inner forms of H (cf. or [27]), called the Vogan L-packet
associated to ¢. It is known that there is a natural bijection between II(y) and the
set of irreducible representations of the finite group A, = m(Cy) (|27, Theorem 6.3]),
where C,, is the centralizer of the image of ¢ in H.

In §3.3] we will describe such a bijection for limit of discrete series L-parameter ¢
of H

Ay = 1l(p)
which maps the identity of ;1; to the generic representation in II(y). Here we say a
representation is generic if it admits a Whittaker model (|1, §5]).

1.2. Main result. — let 7 be a limit of discrete series representation of G with the
Langlands-Vogan parameter (¢, 7). Suppose

Y= @i‘czlcipki @(22 + 1)17
where

1. \; are odd positive integers such that Ay > --- > Ap > 0;
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2. pa,’s are self-dual irreducible representations of the Weil group Wx of dimension
2;
3. ¢,2€ N, i=1,---  k, with z—i—Zf:lci =n.
Then the component group A, is a quotient of ®;_;(Z/2Z)a; P ©5_,(Z/2Z)b; with
r = Zle c;. The signature of the character n gives a partition of ¢; = py; + @y,
where p;, ; and ¢, ; denote the number of positive signatures and negative signatures
at the component corresponding to py, respectively.

Theorem 1.1. — Let V be a 2n-dimensional symplectic space over R.
(1) Let 7 be a limit of discrete series representation of Sp(V') with Langlands-Vogan
parameter (@, n), where

0 = O (Pni + ani)ox, PRz + 1)1,

with pyi, @i, 2 EN,i=1,--- K, z+2f:1(pn7,;+qn,,;) =n and py, self-dual irreducible
representation of the Weil group Wgr of dimension 2 with \; an odd integer. Then
there exists a unique pair of even integers (p,q) satisfying p+q = 2n+ 2 and a
(2n + 2)-dimensional orthogonal space V' with signature (p,q) such that 0, ,(n) is
a limit of discrete series representation of O(V/) with Langlands- Vogan parameter

(0p.4(0), 0,.4(n)), where
Op.a(0) = 0+ 1= &1 (Dni + @n.i)oxs @(22 +2)1.

Then the component group A, is a subgroup of Ag ), and we have

p.a(p
9p7q(77> |A¢ =1

(2) Let V' be a (2n + 2)-dimensional real orthogonal space with signature (p,q),
where p,q are even integers, and let 7 be a limit of discrete series representation of
O(V") with Langlands-Vogan parameter (¢',n'). Assume that QV/7V(7r/) # 0. Then the

Langlands-Vogan parameter (p,n) of the representation HV/’V(F/) of Sp(V) is given by
p=¢ =1, n=1a,.
Moreover, by the Langlands-Vogan parametrization of parabolic inductions and the

induction principle of theta lifts, the main result of the tempered case can be reduced
to the limit of discrete series case.

Theorem 1.2. — Let V be a 2n-dimensional symplectic space over R.

(1) Let 7 be a tempered representation of Sp(V') with Langlands-Vogan parameter
(¢,n). Then there exists a unique pair of even integers (p,q) satisfying p+q =2n+ 2
and a (2n+2)-dimensional orthogonal space V' with signature (p,q) such that 0, ,(r) is
a tempered representation of O(p, q) with Langlands-Vogan parameter (0, 4(¢), 0, 4(n)),

where 0, 4(¢) = ¢ + 1. Then the component group A, is a subgroup of Ag, (), and

q(‘P
we have

ep,q(m |A¢ =1
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(2) Let V' be a (2n + 2)-dimensional real orthogonal space with signature (p,q),
where p,q are even integers, and let 7 be a tempered representation of O(V/) with
Langlands-Vogan parameter (¢',n'). Assume that HV/’V(W/) # 0. Then the Langlands-
Vogan parameter (¢,n) of the tempered representation Hvly(w,) of Sp(V) is given
by

p=¢ =1, =1,
Remark 1.3. — The corresponding reinterpretation for real unitary groups case
has been done in [15] Section 5.3.1]; for metaplectic-orthogonal dual pairs, the rein-
terpretation is trivial since Gan, Gross and Prasad [9] defined the Langlands-Vogan
parameters of metaplectic groups via theta correspondence.

1.3. Acknowledgement. — This note serves as a preparation for a forthcoming
paper, initially started from a discussion with Hang Xue. During the preparation of
this note, Shanwen Wang has benefited by the discussions with Wenwei Li, Cai Li,
David Renard, Hang Xue and Lei Zhang. Part of this article is written during the
visits of first author at BIMCR, Peking University and HongKong University. The
first author would like to thank Wenwei Li and Kei Yuen Chan for their hospitalities.
The third author would like to thank Jeffrey Adams for helpful discussions about the
material to be found in Section [3:2] Finally, the authors would like to express their
special gratitude to Hang Xue for his constant support.

2. Preliminary

We consider the following real classical groups of rank n with n > 1:

1. The symplectic group Sps,,. Its Langlands dual group is SOs,4+1(C) and its
L-group is the direct product SOg,4+1(C) x Wrk.

2. The even split special orthogonal group SO3,,, n > 2. Its Langlands dual group
is SO2,(C) and its L-group is the direct product SOz, (C) x Wxg.

3. The quasi-split even special orthogonal group SO3,, n > 1. Its Langlands dual

is SO2,,(C) and its L-group is the semi-direct product SOs,,(C) x Wrg.

2.1. Complex reductive groups. —

2.1.1. Based Root Datum. — Let G be a complex reductive group. A Borel pair
(B, T) of G is a pair consisting of a maximal torus T of G and a Borel subgroup B
containing T. For any Borel pair (B, T) of G, let X(T) be the group of characters of
T, @ the set of roots, XV (T) the group of cocharacters of T and ®" the set of coroots.
We denote the natural pairing X (T) x XV(T) — Z by (-,-). We also fix the canonical
isomorphisms:
t~2 XV (T)®zC, t'=X(T)®zC,

where t = Lie(T).
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Definition 2.1. — 1. The root datum of G is a 4-tuple
R(G,T) = (X(T),®, X(T)",2")

where @ (resp. ®V) is the set of roots (resp. coroots) associated to the pair
(G, T).

2. Fix a Borel pair (B, T) of G. Let A (resp. AY) be the set of positive
simple roots (resp. coroots) corresponding to B. We call the 6-tuple D, =
(X,®,A, XV, &V AY) the based root datum of G associated to (B, T).

Up to a canonical isomorphism, the 6-tuple is independent of the choice of Borel
pair: if (B'7 T') is another Borel pair of G, then there exists g € G such that Ad(g)
carries (B, T") to (B, T) and the induced isomorphism on based root datum Dy of G
is independent of g.

2.1.2. Automorphisms. — We denote by Inn(G), Aut(G) and Out(G), the group of
inner automorphisms of G, the group of (holomorphic) automorphisms of G and the
group of outer automorphisms of G respectively. There exists a short exact sequence
of groups

(2.1) 1= Inn(G) = Aut(G) — Out(G) — 1.

The group Aut(G) acts on the set of Borel pairs of G with maximal split torus T.
If o € Aut(G), the Borel pairs (0(B),o(T)) and (B, T) are conjugate by an element
go € G, which is uniquely determined by o up to an element of T (cf. [8, Prop. 6.2.11
(2)]). This induces a group homomorphism Aut(G) — Aut(R(G, T),A) defined by
o — Ad(g,) o o, where Aut(R(G, T),A) is the group consisting of automorphisms of
Dy. By [8 Prop. 7.1.6], there is an exact sequence

(2.2) 1 = Inn(G) = Aut(G) — Aut(R(G,T),A) — 1,

identifying Out(G) with Aut(R(G, T), A).

2.1.3. Pinning and L-group. —

Definition 2.2. — A pinning for G is a triple Splg = (B, T, {X,}aca), where

(B, T) is a Borel pair of G, A is the set of simple roots associated to (B, T) and X,
is a a-root vector of T in Lie(B).

The group G acts on the set of pinnings by conjugation. Given a pinning Splg, we
can associate it with an isomorphism

ssplg : Out(G) = Stabp,y(q)(Splg) C Aut(G)
and this is a splitting of the exact sequence ([2.1). We call a splitting of the exact
sequence (2.1) distinguished if it fixes a pinning for G.
The complex dual group G? of G is the complex, connected reductive group

whose root datum is isomorphic to R(G,T)". Fix such an isomorphism of R(G,T)"
with R(G? T¢). Through the natural Galois action I' on R(G,T), we obtain a
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homomorphism I'" — Out(G%), using the identification of two short sequences
and . By composing with the section sgp1_, defined by a pinning Splga, we
obtain an action of I on G? which preserves the pinning Splga. The Langlands group
LG of G associated with the pinning Splga is the semi-direct product G¢ x Wg,
where the action of Wg on G? factors through the projection pyy, : Wg — I' and it
stabilizes Splga.

2.2. Root systems of real reductive groups. — In the study of connected
semisimple groups up to central isogeny, it is convenient to work with a coarser notion
than a root datum, in which we relax the Z-structure to a Q-structure and remove
the explicit mention of the coroots.

Definition 2.3. — A root system is a pair (V, ®) consisting of a finite-dimensional
Q-vector space V and a finite spanning set & C V' — {0} such that for each o € ® there
exists a reflection s, : v — v — A(v)ar with A € V* such that s,(®) = @, so(a) = —«
and \(®) C Z.

Remark 2.4. — If (X,®, XV, ®V) is a root datum, then the Q-span V' of & together
with @ is a root system.

Let G be a complex reductive group. A real form of a complex reductive group G
is an antiholomorphic involutive automorphism o of G.

Definition 2.5. — [19] Définition 5.1] Let (G, 0¢) be a real form with complex
reductive group G. A Borel pair (B, T) of a complex reductive group G is called
fundamental if the following conditions are satisfied:

(i) T = T?¢ is a maximally compact subgroup of G = G79;

(ii) The set of roots of T in B is stable under —og.

Moreover, a fundamental Borel pair (B, T) of G is called of Whittaker type if all
the imaginary simple roots of T in B are non-compact.

By [6, Prop. 6.24], a real form (G, o¢) has a fundamental Borel pair of Whittaker
type if and only if (G, o¢) is quasi-split. This applies to real symplectic groups and
real orthogonal groups of equal rank.

Let (G,0q) be a quasi-split real form and we fix a maximal torus T of G. Let
g (resp. t) be the Lie algebra of G (resp. T). Then we have a root system ®(g,t)
associated to the pair (g, t). Choose a simple root system A(g,t) whose elements are
non-compact roots. This choice determines a Borel subgroup B of G. Moreover, the
Borel pair (B, T) is a fundamental Borel pair of Whittaker type of G.

Let ¥ be the system of positive roots generated by A and let ¥, C ¥ be the subset
of compact positive roots. We set

p(\IJ):%Za and pc(\I/):%Za.

acv acVv,
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Note that p.(¥) is independent of the choice of the set of positive roots and we simply
denote them by p. respectively.

2.2.1. Symplectic case. — Let G = Sp,,,(R) and let (G, o) be the real form corre-
sponding to G. Let g be the Lie algebra of G. The maximally compact subgroup of G

1S
T — {( diag(cos ty, - ,costy) diag(sintl,‘-»,sintn)) = R,l <i< 'fl}

diag(—sinty, - ,—sint, ) diag(costy, - ,costy)

The Lie algebra of T is

(2.3) to = {(diag(—t?jw —tn) diag(té;m ’tn)> (i €R1<i<n}

Let t be the complexification of t3. For 1 < i < n, we define the characters of t:

L. 0n diag(t17"'7tn) i
€;: (diag(fth___ﬁtn) o ) € t— 2it; € C.

Then we have t* = @}, Ce; and the set of roots is
O(g,t) ={fe; +e;: 1 <i<j<npU{£2e;:1<i<n}

Let A(g,t) be the subset {e; + ept1-i, —€nt1—i — €11 : 1 < i <n—1} of (g, 1),
which is a set of non-compact simple roots. We denote by ¥ the set of positive roots
generated by A(g,t). Moreover, the subset of positive compact roots of ®(g,t) is
PF ={e; —e; : 1 <i < j<n}. This based root datum determines a fundamental
Borel pair of Whittaker type of G.

2.2.2. Orthogonal case. — Let G = O(p, q) with p > ¢ even. Let (G, 0q) be the real

form corresponding to G. Let g be the Lie algebra of G. Let po = £ and go = £. The
maximally compact subgroup T of G consists of the following matrices:

diag(( costy Sint1) ( oS tpg Slntm) ( cos 51 sinsl) ( cos sy sinsgg ))
—sinty costy /) »\ —sintp costyy /7 \ —sinsy cossy /) '\ —sinsg, cossg, /7

with t;, s; € R.

For ¢t € R, we denote the matrix (% §) by g(¢). The Lie algebra t of T’ consists of
matrices {diag(g(t1), -+, 9(tpy), 9(s1), -+, 9(8¢,)) With ¢;,s; € R for 1 < i < py and
1 < j < qo. Let t be the complexification of t5. For 1 <i < py and 1 < j < qo, we
define the characters e; and f; of t by the following laws:

€ diag(g(tl)a ce ag(tpo)vg(sl)v te ,g(s%)) — 2it; € C,
fj : dlag(g(t1)7 e 7g(t;vo)7g(81)v e 79(3‘10)) = ZZSJ eC.
Then we have t* = @72, Ce;  ©J2,Cf; and the set of roots is
(g, t) ={Feite; 1 1<i<j<polU{Efitfi:1<i<j<qo}
U{fe; £f:1<i<po,1<j<qo}
Let A(g,t) be the subset of ®(g,t) defined as follows:
1. f p=gqorp=gq+2, then

Ag,t) ={ei — fi, fi —eir1ll <i < qo} U{ep, + foo )
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2. If p> g+ 2, then A(g,t) is a set of following non-compact simple roots:

{ei—fi, fi—eir1[1 <i<qofU{ej —ejrilao+1 <37 <pofU{ep—1+epyt-

We denote by ¥ the set of positive roots generated by A(g,t). Moreover, the subset
of positive compact roots ®F of ®(g,t) is

{ei—ej:1<i<j<plU{fi—fi:1<i<j<q}

This based root datum determines a fundamental Borel pair of Whittaker type of G.

2.3. Generalities on real forms and Cartan involutions. — We recall some
structure theories of real reductive groups and the parameterization of real forms. Our
main reference is [4].

Definition 2.6. — Let G be a complex reductive group.

1. We say that two real forms o1, o2 are inner to each other, or in the same inner
class, if o105 ! is an inner automorphism of G.

2. We say that two real forms o1, o9 are equivalent, if they are conjugate by an
inner automorphism of G.

3. A real form o of G is said to be a compact real form if G is compact and meets
every component of G.

Given a real reductive group G, it is equivalent to provide a real form o, which
satisfies (G ®r C)7¢ = G.

Remark 2.7. — The standard definition of equivalence of real forms (cf. [22] Section
IT1.1]) allows conjugation by Aut(G). But since we are interested in the inner class,
we follow the definition of Adams and Taibi in [4]. Moreover, for a real form o of
G, by [4 Lemma 8.1], the set of equivalent classes of real forms in the inner class
of o is parametrized by H'(0,G,q), where G,q is the adjoint group. Explicitly, the
map is cl(h) — [int(h) o o]. By [4, Lemma 2.4], for an equivalence class [o], we have a
well-defined pointed set H'([o], Gag) = H' (0, Gaq)-

Remark 2.8. — By [4, Lemma 3.4], our definition of compact real form is equivalent
to the definition of Mostow [20], Section 2|, which defines a compact real form to be a
compact subgroup Gk of G such that

Lie(G) = Lie(Gk) @i - Lie(Gk),

and G meets every connected component of G. The bijection is given by o — G°.
Every complex reductive group has a compact real form (Weyl, Chevalley, Mostow [20]
Lemma 6.2]), and the uniqueness is up to the G° conjugation (Cartan, Hochschild,
Mostow [13, Ch. XV], |20, Theorem 3.1]), where G° is the identity component of G.

Cartan involution provides a description of real forms in terms of holomorphic
involutions which is better suited to our purposes.
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Definition 2.9. — A Cartan involution for (G, o), where o is a real form of complex
reductive group G, is a holomorphic involutive automorphism # of G, commuting with
o, such that 6o is a compact real form of G.

The existence and uniqueness (up to conjugation by Inn(G?)) of Cartan involution,
and the correspondence between

{antiholomorphic involutive automorphisms of G}/Inn(G?)

and
{holomorphic involutive automorphisms of G} /Inn(G°)

induced by the correspondence between real forms and Cartan involutions, are given
by [4, Theorem 3.13], based on Remark The following construction also gives an
explanation.

Fix a Borel pair (B, T) of G. If ¢ is a real form of G and 6 is a Cartan involution
for (G, o), then both o and 6 naturally act on the based root datum D, attached to
(B, T), giving rise to two involutions 7,6 € Aut(R(G, T),A), which are also seen as
elements of the subgroup Out(G)[2] of order 2 elements in Out(G). They are related
by 70 = —wg, where wy is the longest element of the Weyl group of D;, and —1 is
the inversion automorphism of T. Note that wy is invariant under Aut(R(G,T), A),
and so ¢ := —wy is a central involution in Out(G). As a result, we see that the set of
inner classes of real forms of G can be parametrized by Out(G)[2], and we say that a
real form o lies in the inner class defined by ¢ € Out(G)[2] if td = 7. We also say its
corresponding Cartan involution lies in the inner class defined by §.

Definition 2.10. — The real forms in the inner class defined by 1 € Out(G)[2] are
called of equal rank.

Every real form G(R) in this inner class contains a compact Cartan subgroup, and
every Cartan involution in this inner class is contained in Inn(G). The reason why this
inner class is of our interest is that a necessary and sufficient condition for G(R) to
admit discrete series is that it has a compact Cartan subgroup, by [11, Theorem 13].

For an inner class 6 € Out(G)[2] and a pinning Splg = (B, T,{Xa}aca),
there is a unique real form o4s(d,Sple) of G preserving Splg and such that
04s(0,Spla) = ¢d, and it is naturally a quasi-split real for Since for g € G,gq,
we have 04s(6,int(g)(Splg)) = int(g) o 04s(8, Splg) o int(g) !, the equivalence class
of 04s(9,Splg) does not depend on the choice of Splg. We denote this unique
equivalence class of quasi-split forms in the inner class defined by § as [04s(d)]. Denote
its corresponding (inner class of) Cartan involution [fqs(d)].

Conversely, the above construction contains all quasisplit real forms of G. The
conjugacy class of quasi-split real forms has a particular interest as they can be
characterized by Borel pairs with special properties.

(3) A real form is called quasi-split if it preserves a Borel subgroup of G.
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Definition 2.11. — We say a real form is quasi-compact if one (equivalently, any)
of its Cartan involutions is distinguished.

For each pinning Splg, each inner class § € Out(G)[2] contains a unique quasi-
compact real form o4.(d, Sple), whose corresponding (inner class of) Cartan invo-
lution is denoted by 64c(d, Splg) (|5, Section 5]). Similarly, the equivalent class of
04c(6,Sple) does not depend on the choice of Splg. We denote this unique class
of quasi-compact forms in the inner class defined by ¢ as [04.()]. Denote its corre-
sponding (inner class of) Cartan involution [f4.(d)]. Notice that an inner involution
is distinguished if and only if it is the identity; this is the Cartan involution of the
compact real form, i.e. 1 € [fqc(1)].

Remark 2.12. — Similarly to Remark for a Cartan involution 6 of G, the set
of equivalence classes of Cartan involutions in the inner class of 6 is parametrized
by H(6,G.q), where G,q is the adjoint group. Explicitly, the map is given by
cl(h) — [int(h) o 0]. Again by [4l Lemma 2.4], for equivalence class [f], we have a
well-defined pointed set H'([0], Gaq) = H' (6, Gaq).

Furthermore, for the corresponding Cartan involution 6 and real form o, the
following diagram commutes:

HY(0,G,q) ——— {real forms inner to o}

|= F

H(#,Gaq) —— {Cartan involutions inner to 6}

Here H'(0,Gaq) = H'(0,G.q) is the canonical bijection of pointed sets (|4,
Lemma 8.4]).

3. Parameters for real reductive group of equal rank

Let G be a real reductive group of equal rank. Let g be the Lie algebra of G¢ and
K a maximal compact subgroup of G¢. We fix a fundamental Borel pair (B, T.)
of Whittaker type and the based root datum (X, ®, A, XV, ®Y AY) associated to
(B4, T,). Let t be the Lie algebra of T, and tg be the Lie algebra of T, NG. Let ¥,
be the set of positive roots generated by A, and V. , be its subset of compact positive
roots. For \ € t*, we say \ is regular (resp. integral) if (\,a") € Z\ {0} (resp. is in
Z) for all & € A,. Let p. be the half sum of the roots in ¥, ..

3.1. Harish-Chandra parameters. — Let Rep(G) be the set of irreducible repre-
sentations of G. For any m € Rep(G), it has a (g, K)-module structure. As a result,
we have following two data attached to m:

(1) There is an “infinitesimal character map”

i Rep(G) — Homc_a1g(Z(g),C), T — fir,
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and by Harish-Chandra’s finiteness theorem [28] Theorem 5.5.6|, this map has finite
fibres. By Harish-Chandra homomorphism we can lift the infinitesimal character
1 to a character of t and such a lifting is not unique. We say an infinitesimal character
is regular (resp. integral) if one of its liftings is regular (resp. integral). Note that if
one lifting of p, is regular (resp. integral), then all the liftings of u, are regular (resp.
integral). We say 7 is a limit of discrete series if its infinitesimal character is integral.

(2) The restriction of m to K can be decomposed into a completed direct sum of
irreducible representations of K. An irreducible representation 7 of K appearing in
the decomposition of 7|k is called a K-type of m, which can be parameterized by its
highest weight 1, € t*. Vogan defined a norm on the set of K-types of 7 as following;:

HT” = \/<,u7' + 2pc, pir + 2pc>'

The minimal K-type of 7 is a K-type of 7 with minimal norm among all K-types of
7 (cf. |24, Definition 5.1]).

Let 7 be an irreducible representation of G with integral infinitesimal character
. Suppose g is the minimal K-type of w. Consider the set Y of pairs (A, ¥), where
A €4tf C t* is a lifting of pir, and ¥ C @ is the set of positive roots with respect to A

satisfying:
(a) W, C W
(b) A is dominant with respect to U;
(c) if a simple root o € ¥ satisfies (A, @) = 0, then « is non-compact.
Then by [26 Corollary 3.44], there is only one pair (A;,¥,) € Y satisfying the
equation
firy = Ar + p(Ur) — 2pc,
where p(U,) is the half sum of the roots in ¥,. We call the triple (A, U, ptr,) the
Harish-Chandra parameter of .

Definition 3.1. — A limit of discrete series Harish-Chandra parameter of G is a
pair (Mg, ¥), where A\g € it C t* is integral, and ¥ C ® is the set of positive roots
with respect to \g satisfying:

(a) Ve C U

(b) A4 is dominant with respect to ¥;

(c) if a simple root « € ¥ satisfies (A\g,a") = 0, then « is non-compact.

(4)The Poincare-Birkhoff-Witt theorem implies that we have a decomposition of Ul(g):

Ulg) =U() & (U(g)n" +n"U(g)),
and the projection of Z(g) to the second factor lies in U(g)nT™ Nn=U(g). Let o Z(g) — Z(t) be the
projection on to the first factor. Let p be the half the sum of the positive roots associated to ®. Let
t, : t = U(t) be the translation operator t,(h) = h—p(h)1. The composition v := tpo'y/ 1 Z(g) > U®)
is a homomorphism, known as the Harish-Chandra homomorphism. The image of the Harish-Chandra

homomorphism is invariant under the action of Weyl group, and the map is actually an isomorphism
v:Z(g) = UMW = St)W = C[t]W.
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Remark 3.2. — Given a limit of discrete series Harish-Chandra parameter (A\g, V)
of G, if A4 is regular, then conditions (a), (b) and (¢) uniquely determine the set U.
In this case, we call Ay a discrete series Harish-Chandra parameter of G. If A4 is not
regular, there are several possible ¥’s admitting the same conditions (a), (b) and (c).

3.1.1. Symplectic case. — The explicit description of the Harish-Chandra parameters
of the representations of real symplectic groups can be given as follows. Let ¥ and A
be the sets of roots and simple roots of G = Sp,,,(R) defined in respectively
and let m be a limit of discrete series representation of G. Then the Harish-Chandra
parameter (A, U, pir) of 7, where

e (i is the highest weight of the minimal K-type of 7 and

Hr = Ax + P(\IIW) = 2p¢;

e Note that t* = @}_,Ce;, then the parameter A, with respect to the basis
{ei}lgign is of the form
A‘rr == (>\17"' 7>\17"' 7>\k7"' aAk707"' 5077>\k7"' 77>\ka"' 77)\15"' a7A1)7
——
P1 Pk z qk q1

with \; €Z, My > > X\ >0, [pi—qi| < 15

e U, C ® is aroot system containing all the positive compact roots, such that A\,
is dominant with respect to ¥, and for all simple roots o € ¥; we have that if
(Ar,a) = 0, then « is non-compact.

e If =0 and p; + ¢; = 1 for all 4, then the representation associated to (Aq, ¥) is
a discrete series.

3.1.2. Orthogonal case. — In the following, we recall the Harish-Chandra parametriza-
tion for representations of the orthogonal group of equal rank O(p,q), with p and
¢ two non-negative integers. We will parametrize the representations of O(p, q) via
the parameters of its maximal compact subgroup K = O(p) x O(g). The equal rank
condition implies that p and ¢ are even if p + ¢ is even.

Set po = [5] and qo = [2]. We can parametrize an irreducible representation of
compact group O(p) by (Ao;€), here A\g = (a1, - ,ap,) is the usual highest weight of
a finite dimensional representation of SO(p) and € € {£1}. If p is even and a,, > 0,
(Ao;1) and (Ag; —1) correspond to the same representation of O(p). If p is odd then
—Id acts by (—1)Zf21 %g. If p is even, the parameter of the trivial representation
of O(p) corresponds to (0,---,0;1), the sign representation of O(p) corresponds to
(0,---,0;—1), and we have (ay,--- ,a[g];e) ®sgn = (ay, - NUE —¢). The represen-
tations of O(g) can be parametrized in the same way. Hence an irreducible finite
dimensional representation of K is parametrized by (a1, ,apy;€) ® (b1, ,bgy; s').
We will refer to (a1, ,ap,;b1, - ,bg,) as the highest weight, and to (¢,¢’) as the
signs of the K-type.
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Let J = diag(1,---,1,—1) € O(p,q) \ SO(p, q) and let o be the automorphism of
O(p, ¢) giving by the conjugation by J. Note that o also acts on representations,
Cartan subgroups and Lie algebra of O(p,q). Let 7 be a limit of discrete of series
representation of O(p, q). Then the restriction of 7 to SO(p, q) is:

Ts0t) = { romire), " ot
Here m is an irreducible admissible representation of SO(p,q) with 7y and o(m)
are non-equivalent. In both cases, we choose the irreducible subrepresentation of
T|$O(p,q) With Harish-Chandra parameter (Ar, V) described as follows: let ®, A be
the sets of roots and simple roots of O(p, ¢) respectively defined in Note that
= o2 Ce; @2, Cf;.

o The parameter A\, with respect to the basis {e;, f; }1<i<po,1<j<qo is of the form

Aﬂ':(Ah'” 7A17"' 7Ak7"' aAkaov"' 507A17"' 7A17"' 7Ak7"' aAkaov"' 50)7
~——— ~———
P1 Pk z aQ qx P
with
(a) A €Z, A1 >+ > X >0, [pi —qi| <1,
(b) |z =2 <1,

k k /
(c) po=20iypi+zand gy =3 qi+2;
e U C ® is aroot system containing all the positive compact roots, such that A\,
is dominant with respect to V...

To parametrize m, we need one more parameter £ € {£1} called the sign of 7.

o If |50 (p,q) is irreducible, then 7[go(p,q) has two liftings 7 and 7 @ det to O(p, q).
We choose the sign +1 for the representation 7 and —1 for 7 ® det;

o If mso(p,q) is reducible, there is only one representation = of O(p,q) whose
restriction to SO(p, q) is mo ® o (7). In this case the sign is arbitrary, we choose
the sign +1.

The triple (Ar, &, ) is called the Harish-Chandra parameter of .

3.2. Real reductive groups of equal rank. — We are interested in the real reduc-
tive groups of equal ran since the real forms admit discrete series representations
if and only if it is of equal rank. Note that, if n is odd (resp. even), then the split
(resp. quasi-split) orthogonal groups of rank n are not of equal rank. Thus for the
even special orthogonal group, we will take the quasi-split (resp. split) orthogonal
groups of rank n when n is odd (resp. even).

Through the general study on the strong real forms, we fix an inner class § €
Out(G)[2]. Consider the action of Aut(G) on the center Z := Z(G) of G, which
factors through the quotient Out(G). We denote by Z° the subgroup of Z fixed by 4.

() The real form in the equal rank case is called pure inner form in the sense of Kaletha (cf. [16]).
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Recall that in §2.3] we denoted the unique inner class of quasi-split form (resp.
quasi-compact form) defined by §, by [04s(d)] (resp. [04c(d)]), together with their
corresponding inner class of Cartan involution by [04s(d)] (resp. [04c(6)]). For a
fixed pinning Splg = {B, H,{X,}}, we denoted the unique quasi-split form (resp.
quasi-compact form) defined by §, by 0qs(d, Spla) (resp. o4c(d, Spla)), together with
their corresponding Cartan involution by 84(d, Splg) (resp. 84.(6, Spla)).

In this section, we start with two perspectives of definitions on strong involutions
and strong real forms, and explain how these two perspectives coincide. In particular,
in the equal rank case, this allows us to use the set {h € H: h? = 2} /W, where H is
a Cartan subgroup of G with Weyl group W, to parametrize the equivalence classes
of strong real forms of G (Proposition .

3.2.1. Strong Involution. — Denote I = {1, 4.(J, Sple)}. Define the extended group
for (G, ¢) as the semi-direct product

Gl'=G«T.

Definition 3.3. — |3l Definition 2.13]

1. A strong involution of G in the inner class defined by § is an element ¢ € GI'\ G
such that €2 € Z;,,. The set of such strong involutions is denoted by SIs.spie (G).
Moreover, to a strong involution £ € SIs spig (G), we can associate a central
invariant

Inv(¢) =¢&% ¢ Zfor.

2. Two strong involutions &, §/ are said to be equivalent if there exists g € G, such
that € = g¢ g~!. We denote by [SIs,spie (G)] the set of equivalence classes in
SIs spig (G).

Since the choice of quasi-compact form in an inner class only depends on the choice of
the pinning of G, where two pinnings Splg and SplG/ differ from an inner involution,
say, there exists h € G, such that Splg = int(h) o Splc’ ([3} Proposition 2.8]). Thus
[SIs,spie (G)] is independent of the choice of Splg.

We denote by [SIs(G)] the set of equivalence classes of strong involutions defined
by d. Note that two equivalent strong involutions &, fl have the same central invariant.
Hence the central invariant is well defined for [SI5(G)].

For ¢ € [SI;(G)], let 8 = int(§) be the corresponding Cartan involution in the
inner class defined by 4. In fact, £ — ¢ induces a surjection:

[SIs(G)] — {equivalence classes of cartan involutions in the inner class defined by ¢}.

To any Cartan involution 6 of G in the inner class defined by §, one identifies [6]
with a class in H!([04c(5)], Gaa), by Remark and defines a central invariant
Inv([0]) € Z°/(1 + 6)Z of the equivalence class [o], using the map

H'([0c(9)), Gaa) = H([00c(0)), Z) = H°(0.2) = Z° /(1 + )Z = Z° /(1 + §)Z.
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The first map is from the connecting homomorphism of group cohomology for the
exact sequence:

12Z—-G— Gy — 1.
The second and the third arrow are from properties of Tate cohomology, and the last
one is from [4, Lemma 8.6]. If two Cartan involutions 61,6s of G live in the same
inner class and have the same central invariant, then H'(0;,G) = H' (03, G) (cf. |4
Lemma 8.10]).

The following commutative diagram shows the compatibility of the two central
invariants:

[SLS(G)] —— Hl([QQC(é)]v Gad)

ilnv iInv

yAJp— LNV /

Proposition 3.4. — [2| Lemma 6.10| Suppose that 6 is a Cartan involution of
G in the inner class defined by 6. Choose a representative z € Z2.. of Inv([f]) €
Z°/(1+ 6)2@ Then there is a bijection:

HY(0,G) < {equivalent classes of strong involutions with central invariant z}.
3.2.2. Strong Real Forms and their relations. —

Definition 3.5. — [4l Definition 8.11]
1. A strong real form in the inner class of 04(0, Sple) is an element of
SRFa(ls(é,Splc)(G) = Zl (qu(5, SplG)a G; Zmr)/(l + O—qs(éa SplG))Za
where Z1(04s(d,Spla), G; Zior) := {g € G : go4s(6,Splg)(g) € Ztor }. Moreover,
to a strong real form g € SRF,_ (5sp1)(G), We can associate a central invariant
Inv(g) = go’qs(éy Splc)(g) € Zfor'

2. Two strong real forms g,h are said to be equivalent if they map to a
same element of H'(04s(3,Spla), Gi Zior) 1= Z'(00s(3,SPla), Gi Zior)/lg ~
tgoqs(6,Splg)(t™1),t € GJ.

Note that two equivalent strong real forms g, h have the same central invariant. Note
that for two pinnings Splg and Splg with h € G, such that Splg = int(h)oSplg ,we
have a bijection:

SRF . (5,5p16)(G) = SRFaqs(fs,splG')(G)a g ghgqs(&,Splc/)(h)_l’

Thus we define the set [SRFs(G)] of equivalence classes of strong real forms in the
inner class defined by d, together with a central invariant map Inv : [SRFs(G)] — Z2 .
By the previous discussion, [SRFs(G)] is independent of the choice of Splg.

(®)For existence of such representative, see [3, Lemma 2.15].



18 ZHE LI, SHANWEN WANG & ZHIQI ZHU

As the pinning varies, maps g € SRF,_ (5sple) = int(g) 0 04s(d, Spla) are compat-
ible and induce a surjection:

[SRFs(G)] — {equivalence classes of real forms in the inner class defined by d}.

To any real form o of G in the inner class defined by J, one identifies [o] with a class in
H'([04s(5)], Gaa), by Remark and defines a central invariant Inv([o]) € Z°/(14+6)Z
of the equivalence class [o], using the map

H'([045(8)], Gaa) = H(045(8),Z) = H(0,Z) 2 Z° /(1 + 0)Z = Z° /(1 + 0)Z

which is similar to the Cartan involution case.
The following commutative diagram shows the compatibility of the two central
invariants:

[SREFs(G)] —— H'([04s(9)]; Gaa)

llnv llnv

7, = 7°/(1+0)Z

tor

Proposition 3.6. — [4l Proposition 8.14] Suppose that o is a real form of G in the
inner class defined by 6. Choose a representative z € Z{, of Inv([o]) € Z° /(1 + 0)Z.
Then there is a bijection:

H'(0,G) < {equivalent classes of strong real forms with central invariant z}.

Recall that we have the canonical bijection of pointed sets H! (o, Gaq) = H' (6, Gaq)
(see Remark , and two compatibilities of central invariant functions mentioned in
this section. We have the following commutative diagram by composing them:

[SRF5(G)] —— H'([0], Gaa) —— H([0],Gaq) +— [SI5(G)]

llnv llnv llnv llnv

7, ——— S T)(1+0)Z —— Z°)(1+ 6)Z +—— 78

tor tor

This shows the compatibility of the central invariants for strong involutions and strong
real forms (in Z°/(1 + 6)Z).

Note that there is a natural bijection between [SRFs(G)] and [SI;(G)] ([4,
Remark 8.13|): fixing a pinning Splg, choose go € SRF,_ (s5sple) such that
04c(6, Sple) = int(go) 0 04s(4, Sple). Then by twisting gy (see [4, Lemma 2.4] and [4}
Corollary 4.7]), we have

[SRFs(G)] = H'([04c), Gi Zeor) = H' ([0gc], G Zior) = [SI5(G)]-

We conclude that the definitions of strong involutions and strong real forms are
compatible, also their central invariants (in Z°/(1 + §)Z). From now on, we do not
differ [SI;(G)] “the equivalence classes of strong involutions (in the inner class defined
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by §)” and [SRF;s(G)] “the equivalence classes of strong real forms (in the inner class
defined by 4)”.

For the equal rank case § = 6, = 1, we have an explicit description of equivalence
classes of strong real forms using central invariants:

Proposition 3.7. — [4, Proposition 8.16|[2], Corollary 6.14] Suppose that o is an
equal rank real form of G. Choose x € G such that int(z) is a Cartan involution for
o and z = x> € Z. Then we have an explicit bijection

H'(0,G) < S(2),

where S(z) is the set of conjugacy classes of G with square equal to z. If H is a Cartan
subgroup of G with Weyl group W, then S(z) is equal to {h € H: h?® = z}/W.

Example 3.8. — In [4, Table 1: Classical groups| and [4], Table 4: Adjoint classi-
cal groups|, the cardinality of the cohomology group H'(o,G) and H'(0,G.q) (of
equal rank case) are calculated for the classical groups G respectively. In this example,
we will explain how this parametrization works for the symplectic group and orthogonal
group, following the calculation in [5, Example 5.11]. Recall that in the equal rank
case, we choose 0 = 0. = 1.

To describe the set {h € H: h? € Z}/W, we use the coweight lattic for G:

PY={)\Y € XV(H) ®z Cl{a, \") € Z for all a € ®},

which can be described explicitly via the given based root datum. In fact, through
the canonical isomorphism b 2XV(H) ®z C, the coweight lattice PV for G can be
regarded as a subset of Lie algebra b:

PY ={)\Y € p|lexp(2mi\Y) € Z}.
As aresult, by [3, Lemma 22.3], the set {h € H : h? € Z} /W can be identified with the
set (PY/2XV(H))/W, whose inverse is induced by the map AV € PY s exp(mi\Y) €
H.
Symplectic Case C,,: For G = Sp,,,(C), since it is simply connected and semisimple,
we fix an isomorphism XV (H) = ®¥ = Z" through the root system chosen in
By Proposition [3.7] the equivalence classes of strong real forms are parametrized by

(12U (T + 5)")/227)/W.

] L —A— —— )
For representatives, we choose =(1,...,1) and (1,...,1,0,...,0), with 0 < p < n. The

2
representative %(17 ..., 1) corresponds to the split real symplectic group Sp,,,(R) and the

cohomology set ‘Hl(gszn(R)7 G)’ = 1. The central invariant of %(1, .., 1)is —I. Repre-
P q
. /_/H /_/H . . . .
sentatives (1,...,1,0,...,0), with 0 < p < n, correspond to the quaternionic symplectic

(M)This is actually a lattice only if G is semisimple.
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grou o@ Sp(p, q), with p+ ¢ = n, and the cohomology set |H1(O'Sp(p7q), G)| =p+q+1.
P q

——
The central invariant of (1,...,1,0,...,0), with 0 < p < n, is I. All the equivalence
classes of strong real forms of Sp,,, are listed above.

Even Orthogonal Case D,,: For G = SO(p,q) with both p and ¢ even, by [4,
Example 8.20], the set S(1) = {h € H: h? = 1}/W is the same as the set

{diag(I,,—I;)|r + s = p+ q; s even}.

Hence, the set H'(og, G) has cardinality § + £ + 1, and it parametrizes the even
special orthogonal group SO(r, s), with 7 +s = 2n and both r and s even. Such groups
have the central invariant I.

Remark 3.9. — The isometry group SO*(2n) of a skew-Hermitian form on a
quaternionic vector space (counted twice) is the remaining equivalence class of strong
real forms of SO(2n,C). The central invariant of this group is —I. This corresponds
to H1<USO*(2n)7 SO(2n,C)) with cardinality 2.

Remark 3.10. — When p + ¢ = 2n with n > 5, we have Out(SO(2n,C)) = Z/2Z.
Thus there exists non-equal rank real form of SO(2n,C): for SO(p, ¢) with both p, ¢
odd, note that Rank(SO(p,q)) = 254 > 21 4+ ©=1 = Rank(SO(p) x SO(q)). The
inner class of non-equal rank real form consists of SO(p, ¢) with both p, ¢ odd. This
explains why only SO(p, ¢), with both p and ¢ even, appeared in Example

3.2.3. Representation of strong involutions. — In this subsection, let G be a quasi-
split real reductive group of equal rank, and let G be its complex dual group. We
denote by G the complexification of G and by o the action of o on G associated to
G. We also fix a Borel pair (B, T) of G. Let W = Normg(T)/T be the Weyl group
associated to (B, T). We denote by p (resp. p¥) the half sum of the positive roots
(resp. coroots) associated to (B, T).

For simplicity, we denote by S as the set of strong involutions of G in the inner class
defined by § = 64 = 1, and [S] as the set of equivalent classes of such strong involutions.
We have a stratification S = U.¢zS(2) with S(z) = {Z € T : #* = 2}, called the set of
strong involutions of type z. By proposition we identify [S](z) = S(z)/W with
the set of conjugacy classes of strong real forms with central invariant z. For a strong
involution Z € S, set 6; = int(%) and K; = G% = Centg(%).

Definition 3.11. — (1) A representation of a strong involution Z € S is a pair
(Z,7) where 7 is a (g, Kz)-module.
(2) Two representations (Z,7) and (Z,7 ) of strong involutions are equivalent if
=7

there exists g € G such that gzg—! and T 79,

(8)the isometry group of a Hermitian form on a quaternionic vector space.
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(3) A representation of a strong real form associated to x € [S](z) is an equivalence
class [Z, 7] of a representation (Z, ) of a strong involution Z € S(z) lifting «.

For any strong real form z € [S](z) with lifting & € S(z), two representations [, 7]
and [Z,7'] of a strong real form z are the same (i.e. [Z, 7] = [Z,7]) if and only if
there exists g € G such that gig~' = & and 79 = 7 . This holds if and only if g € Kj.
Moreover, for any regular A € t*, denote by mz(\) the unique (g, Kz)-module (up to
isomorphism) with parameter A. Then for the representation [Z, 7z (\)] of strong real
form z and for w € W, we have

(3.1) (2, 75 (\)] = W], 72 (\)] = [WE, Twsz (wA)].

3.2.4. L-packet associated to discrete Langlands parameter and strong involution. —

Definition 3.12. — If a L-parameter ¢ of G has a finite centralizer, then ¢ is called
a discrete series L-parameter.

Fix a discrete series L-parameter ¢ of G. Recall that Wr = C*UjC*. As explained
in [6] Proposition 2.10], we can associate ¢ with a regular character A € t*. More
precisely, after conjugating by G¢ we may assume ¢(C*) C TV. The discrete property
implies that

(1) ()t = b1, for h e TV,

(2) for 3 € C*, we have ¢(3) = (3/3)", with A € X(T) ®z C regular.
By the canonical isomorphism X (T) ®z C = t*, this regular A € X(T) ® C can
associate to a character of the Lie algebra t, still denoted by A\. By [5l §7]|, we may
assume )\ is dominant with respect to the root system associated with (B, T). Let
1 be the infinitesimal character associated to A\, which is independant of choices of
conjugations by G¢.

Let # € S(z) be a strong involution with z € Z. We denote by II(%,¢) the L-
packet associated with ¢ and the strong involution Z (i.e. the L-packet of ¢ and
the real form Gz of G determined by Z). By the equivalence between the category
of smooth Fréchet representations of moderate growth of Gz and the category of
admissible finitely generated (g, Kz)-modules, II(Z, ) can be identified with the set of
discret series (g, Kz)-modules with infinitesmal character p. Note that for any regular
character A € t*, mz(wA) = mz(A) if and only if w € K;. The L-packet II(Z, ¢) can be
parametrized as follows

(Z,0) = {mz(w™'\) :w e W/W(T,K;)},

where W(T, Kj;) is the Weyl group of T in Kj.

Vogan defined II(p) to be the set of all the representations of strong real forms
with infinitesimal character p. Since [S](z) = S(z)/W can be identified with the set of
conjugacy classes of strong real forms with central invarint z, the set of representations
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of a strong real form with central invariant z is stable under the action of WW. The
L-packet TI(Z, ¢) can be embedded into II(¢) as

(2, ) = {[& 7z (w ' N)] : w € W/W(T,Kjz)},

which induces a W-equivariant bijection II(Z, ¢) <> {wz|w € W/W(T,K;)} using the
equality (3.1). To make the bijection more explicit, choose a set Sy of representatives

of [S]. Thus, we have a W-equivariant bijection

(p) = [ 0@ ¢) < [] {wilw e W/W(T,Kz)} =5

TESo TESo

Thus we obtain a W-equivariant bijection.
(32) S Tl(p), &~ [&mz(\)].

We regroup Vogan’s L-packet of ¢ for inner forms using the central invariant: for
z € Z, we set

IL(p) = Uieg(z)n(i ©).

Proposition 3.13. — [1l, Prop. 5.3] For any z € Z and any discrete series Langlands
parameter ¢ of G, we have a W -equivariant bijection between S(z) and IL,(p), given
by & — [Z,mz(N)], where X € t* is the regular character determined by .

Let Z € S and 6; be the Cartan involution associated to &. By |25, Theorem 6.2(f)],
a discrete series representation () is generic if and only if every simple root of g in
the chamber defined by A is non-compact. Recall that a root « is compact with respect
to the Cartan involution 6; if a(Z) = 1, and is non-compact if a(zZ) = —1. Thus,
the element & € S corresponds to a generic discrete series representation through the
bijection if and only if «(Z) = —1 for all simple roots a.

3.3. Langlands-Vogan parameters. — In this section, we will give the explicit
description of the component group of a discrete series L-parameter for symplectic
groups and orthogonal groups starting from a given based root datum, and explain
how to associate a Langlands-Vogan parameter with a Harish-Chandra parameter.

Fix a fundamental Borel pair (B,,T.) of Whittaker type of G. Let D, =
(X,®,A, XV, ®V AV) be the based root datum associated to (B, T.). We denote by
W, the set of positive roots generated by A. Set p = % S aand p¥ = % S oav.

aev, avewry
The half sum p of the positive roots produces a basepoint x;, € S of the strong
involutions of G:
xp = exp(imp”) € 8 = U,ez8(z) C T,.

Note for any simple root a € A, we have {(a, p¥) = 1. We can deduce that a(z;) =
exp(im(a, p¥)) = —1, for any simple root a € A. Thus, the element z;, € S corresponds
to a generic discrete series representation through the bijection for any discrete
series L-parameter ¢ of G.
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Example 3.14. — We use the fixed root systems V¥, g, in section and ¥, o in
section to compute the basepoints for G following the above discussion.

1. Suppose G¢ = O(2n + 1,C) with n odd. Let T be the maximal torus of G¢ with
Lie algebra

with g(t) = (%, §) for all t € C. Let

e; : (diag(g(t1), -+, 9(tn),0)) — 2it,.
Then t* = @' ;Ce;. There is a positive root system
\IIV = <61 + €n, —€n — €2,€2 + En—1,""", 76# - e%ﬂve%y

The half sum of these positive roots is

p’ = %((277/—1)€1+(2n—5)62+"'+36% —enys — o (2n — 3)ey).
Thus, the basepoint of strong involutions for G is

Tp,sp = (isin(2n — 177), e 7isin(2n2_ 37r)) =i(1,---,1,=1,---,=1)
and z(p¥) = a3 g, = —1I.

For G? = O(2n+1, C) with n even, the same computation shows the basepoint
for G is
xpsp =4(=1,---,=1,1,---,1).
2. Suppose G% = O(2n, C) with n even. Then as in section m
Y = (e; — fi, fi — €ir1,en + fo)ici<n

is a positive root system. The half sum of these positive roots is
1
p’ = 5(2(71— Der+2(n—3)eg+ -+ +2en +2(n—2)f1 +--- +4fn_1).
Thus, the basepoint of strong involutions for G is
xp,0 = (cos((n — 1)), -+ ,cos(0)) = (=)=t (=)™ (=), (=)™
and z(p¥) = a3 = I.

Let ¢ be an L-parameter associated to a limit of discrete series representation of
an equal rank real form G of G. We describe the component group A, = my(C,,) for
G = Sp,,,(R) and G = O(p, q) with p, ¢ even in the following example.

Example 3.15. — Let 1 be the trivial character of Wx.
(1) Let G = Sp,,,(R). Let us write the limit of discrete series L-parameter ¢ of G
as

i=1



24 ZHE LI, SHANWEN WANG & ZHIQI ZHU

where z is a positive integer and py,,- -, pa, are self-dual irreducible representations
of Wg of dimension 2 with A; even natural number and ¢; > 0 an integer.
The component group A, of ¢ is

_ Jei(z/22)a;, ifz=0,
Y@k, (Z/22)a; ® (Z)22)b,  if 2> 0,

where a; is a symbol corresponding to py, and b is a symbol corresponding to 1.
(2) Let G = O(p, q) with p, q even. Let ¢ be a limit of discrete series L-parameter
with decomposition

k
=1

where z is a positive integer and py,, -, pa, are self-dual irreducible representations
of Wg of dimension 2 with \; even natural number and ¢; € Ny .
The component group A, of ¢ is

{®§_1(2/2Z)ai, if 2 =0,

o=

oF_(Z)2Z)a; © (Z/22)b, if 2z > 0,
where a; is a symbol corresponding to py, and b is a symbol corresponding to 1.

Definition 3.16. — A Langlands-Vogan parameter of G is a pair (p,n), where ¢ is
a L-parameter of G and 7 is a character of the component group A.

If  is a discrete series L-parameter of G, we have
A, 2{heT) h*=1}=T)[2

and the pair (p,n) is called a discrete series Langlands-Vogan parameter. Using the
perfect pairing between T and X (TY), we identify TY[2] with

Hom(X (T))/2X(T)),C*) = Hom(X"(T.)/2X"(T,),C*).
This induces an isomorphism
s: XY(T,)/2XY(T.) = A,.

On the other hand, for any z € S(z(p¥)), there exists a v € XY (T,) such tha
x = exp(miy”). Note that we have an isomorphism S(z(p")) = T.[2],2 — =z},
where 1z, is the basepoint of the strong involutions of G. Then there is an isomorphism

S(z(pv)) = T.[2] = ;1:,7 T xm;l — S((—,xm;1>),

where (,) is the perfect pairing between T [2] and T,[2]. In particular, the identity of
A, is the image of the basepoint a, € S(2(p¥)) C T. of the strong involutions of G.

(9)We use our fixed isomorphism t. 2 XV (T.).
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For any n € Z;, we can associate a unique x,, € S(z(p")). Thus there is a unique
element w, € W such that w, - vy, = ;. This implies the element 7 corresponds to
a representation [z, 7., (A)] of strong real form defined by z,. Note that, w, = 1
corresponds to the generic representation [zp, 74, (A)] with respect to the fundamental
Borel pair of Whittaker type (B, T.). Thus, for a discrete series Langlands-Vogan
parameter (¢, 7), we get a Harish-Chandra parameter (A, ¥, it,)), where ¥,, = w, V..

Ezxzample 3.17. — In this example, we choose the basepoint xp s, and xp 0 described
in Example

(1) Suppose G = Sp,,,(R).
(2) If n is even, then the positive root system ¥, g, is generated by the
simple roots {e; +e,, —€, —eg,- -+ ,en +eng2, —26#}. By the dominant
condition, the corresponding lifting of Ay is

)\d,Sp = ()\17)\37' o 7)\n717_)\n7' o 7_)\2)'

(a) If n is odd, then the corresponding positive root system Uy g, is generated
by the simple roots {e; +e,, —€, —ea, -, —€ng1 — enT+3726nT+1}. By the
dominant condition, the corresponding lifting of A\g is

Ad,Sp - ()\1’)‘35 et a)"na _>\TL—1) T ?_A2)-

In both cases, the unique generic representation in the L-packet corresponding

to the basepoint is determined by the Harish-Chandra parameter (Ag sp, ¥p,sp)-

(2) Suppose G is the even orthogonal group of rank n associated to the basepoint

zp,0. Thus G has signature (n,n) (resp. (n+ 1,n — 1)) if n is even (resp. odd).

Let Mg be an infinitesimal character of G as above.

(a) If n is even, then the corresponding positive root system ¥y o is generated

by the simple roots {e1 — fi,f1 — ez, -+ ,en — fz,en + fn}. By the
dominant condition, the corresponding lifting of Ag is

A3,0 = (A1, A3, -, An13 Az, An).

(b) If n is odd, then the corresponding positive root system ¥; o is generated
by the simple roots {e; — f1, f1 —e2, - ,f% —€ng1,enp + f%} By
the dominant condition, the corresponding lifting of \g is

)\d,o - (A17>\3?'.' 7>\n;)\25"' a)‘n—1)~

In both cases, the generic discrete series representation corresponding to the
basepoint xp,0 is determined by the Harish-Chandra parameter (Ag,0, ¥p,0).

Let G be an equal rank real form of G. In the following examples, we describe ) € ;1;
in terms of element of the Weyl group W/W (T., K), where K is the complexification
of the maximal compact subgroup of G.
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Example 3.18. — (1) Let (y,n) be a discrete series Langlands-Vogan parameter
of G = Spy, (R). Let z,, € S(z(p¥)) be the strong involution corresponding to
RS Egp. We follow the notations in For any root a; € A(g, t), let s, be
the reflection associated to «;. In particular, we have

SeiJrej:diag("'; tioyoeey —t; o) > diag(---, —t5,0 -, t; g ).
~— ~ ~ ~—
i-th (2n—j+1)-th i-th (2n—j+1)-th

The Weyl group W of G = G ® C is generated by the set

{Se1—esrSea—ess " »Sen_1—ens S2e, |
of reflections.
i—1
0 -1 o
Let A;; = ) Ton—jt1 . € Normg,.(T) for 1 < 4,5 < n. Then
. Ij71
A; j acts on T, via
T —1 . —1
Ai,j~d1ag("'7 Ti7".7 /r'j 7...)|_>dlag(...7frj sttty 7'1‘ 7...).
~ N7 ~~ ~
i-th (2n—j+1)-th i-th (2n—j+1)-th

Then the map sending s, y¢; to A; ; gives an explicit isomorphism Normg (T )/ T\ =
W. There exists an element A € Norme(T,)/ T such that z, = A -z} gp; thus
such an A gives an element w, € W via the above isomorphism and we get a
Harish-Chandra parameter (A, ¥,,, it,,), where A\, = w,, - Ag;sp and ¥,, = w, ¥,
(2) Let (¢,n) be a discrete series Langlands-Vogan parameter of G = O(p, ¢) with
p > qeven. Let x,, € S(2(p")) be the strong involution corresponding to 7. We
use the notation in For a € A(g,t), let s, be the reflection associated to
the root . Then the Weyl group W of G is generated by the set

{sei—cisr> sz‘*fj+1}1Si<%»1Sj<%U{5€i*fw Sfi—ejr1r Sfag—eap+10 """ 1 S fag—eng }1§i<%,1§j<%'

Moreover, the quotient group W/W (T., K) is generated by the image of the set
of reflections {Se,— ;. Sf;—e; 411 S fag—eapirs " »Sfap—epg J1<i<E1<j< 2

The group theorectical description of the Weyl group W is given by W &
Normg,.(T«)/ T, where Normg,.(T,) is the normalizer of T, in G¢. In par-
ticular, the following elements S4; +; with 1 <4 < py and 1 < j < qo are in
Normg, (T.). Let Jo = (§ °) € GLy(C). We set

Iagi—1)
I
Io(pg—it1)
S .= PO
4 Ta-1)
Iz
Ia(qo—i+1)
Izi—1
J2
Iz(pg—it1)
S .. = PO
b Ta-1)
I
Ia(g9—i+1)
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Izii—1)
0 Iz
_ Ia(pg—it1)
Sivg = Ta—1) ’
Ja
Ta(g0—-5+1)
Ioii-1)
0 Ja
Ia(pg—it1)
S . .= o
R Ia-1)
J2
T2(q9—5+1)

One can verify that the conjuate action of S; j (resp. S_; ;, S;—; and S_; _;)
on T, coincides with the action of s_.,_f, (resp. s¢;_f,,5 c;+y;, and S¢,4f,).
Then this gives an explicit isomorphism Normeg(T.)/T« = W. The similar
argument as in the symplectic case gives an element w, € W and a Harish-
Chandra parameter (A, ¥, i), where A\, = w, - A\g,0 and ¥,, = w, V,.

If ¢ is a limit of discrete series L-parameter. Following [19, Remarque 5.4], we can
modify the above discussion to relate the Langlands-Vogan parameter (p,n) to its
Harish-Chandra parameter. In fact, since our classical groups are of equal rank, we
can realize the component group A, as a quotient group of the component group of
Agree with ¢ a discrete series L-parameter. Thus, 7 can be viewed as an element of

A res by composing with the quotient map Agres — A,. More precisely, if

k
= @Cip)\i @(22 + 1)1,
i=1

where z € N;A\; € 2N and Ay > --- > A; > 0, then the component group A, is a
quotient of

Agres = @}, (Z/2ZL)a; D &3, (Z/2Z)b;.

where r = ¢; + - - - + ¢. Then, the character n € ;1; can be identified as an element

Na = (M, s Mrtz) € Agrex With
m=-""="MNer;Ner+1 = " = Nertens " 7"72?:_116i+1 = =Ny 41 =" =Ntz
in Agres.

4. Parameters of theta lift for symplectic-orthogonal dual pairs

In this section, we give a description of the explicit theta correspondence of equal
rank groups via Langlands-Vogan parameters by combining the explicit theta corre-
spondence of equal rank groups via Harish-Chandra parameters given by Moeglin (cf.
[18, §4]) and Paul (cf. |21 Theorem 15]), and the explicit correspondence between
the Langlands-Vogan parameters and the Harish-Chandra parameters.

Throughout this section, let V' be a 2n-dimensional symplectic space over R and
V' be a (2n + 2)-dimensional orthogonal space over R with signature (p,q). Then
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Sp(V) = Sp,,(R) and O(V/) = O(p,q). For dual pair (Sp,,(R),O(p,q)), we will
replace the notation 6y, by 6, 4.

4.1. Theta liftings and Harish-Chandra parameters. —

Theorem 4.1. — [18| §4|[21], Theorem 15 Let w be a limit of discrete series
representation of Sps,, (R) and (Ax, U, pr) be the Harish-Chandra parameter of m,
where
)\71' = ()\17"' ,)\17"' ,)\kv"‘ ;)\kvov"‘ aO,_>\k7"’ 7_)\k7”' 7_)\1a"' 7_/\1)~
——

p1 Pk z dk q1

Let w = [3], po = Zle pi +w and qo = Zle q; +w. There is a unique pair of
integers (p,q) with p 4+ ¢ = 2n + 2 such that 0, 4(7) is a non-zero limit of discrete
series representation of O(p,q).

1. z =2w: Oap, 24, (m) # 0 with the Harish-Chandra parameter (X0, 1, Yo o), where

AO,OZ(AM"'5A17"'7Ak5"' a)‘kaoa"' aoa
~——
(4'1) pP1 Pk
)\17"'3)‘17"'3)‘]6"" 7)‘1670"" 70)7
——
q1 qdk w

and Vo o is obtained from V. as follows: for 1 <i <pgy and 1 < j < qo, the root
ei — fj € Wo,0 if and only if e; + en—j41 € V. (This determines Vo o completely.)

2. z=2w >0:

— Ifept1 + epts € Un, Oopoyo.94,(m) # 0 with the parameter (Ag,0,1, ¥a ),
where A2 o is obtained from Ao o by adding a zero on the left and Wy o C
\112’0.

— If —ept1 — eptz € Upr, Oop 2g0+2() # 0 with the parameter (Ao 2,1, ¥o.2),
where Ao 2 is obtained from Ao by adding a zero on the right and ¥o o C
\:[1072.

3. z=w = 0: Oapy42,2q, (7) # 0 with parameter (A20,1, ¥a0) and Oapy 2q,+2(m) # 0
with parameter (Xo2,1,Uo2), where Aao and XAoo are obtained from oo by
adding a zero on the left and right respectively, and Wo o C Wa o, Yo 2.

4. z=2w+1:

— If ept1 + epqs € Wy, then Oopyi294,4+2(m) # 0 with the parameter
(M1,1, ¥y 1), where A11 is obtained from Ao by adding a zero on each
side of the semicolon, and ¥oo U {ep,+1 — foo+1; C P1,1. Moreover,

(10)1n theorem the situation is determined by the condition ep,41 + epg+z or —(epg+1 + €py+2z)
occurs in ¥. The difference between the statement in [2I] Theorem 15| and our statement is due to the
different choices of based root datum. In fact, Paul used the standard simple roots {e; —€;+1, 2en,i =
1,---,n—1}, and we use the non-compact simple roots {e; +ep4+1—i, —€nt+1—i—€i+1: 1 <i <n—1}.
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Oapo+2,2¢0 () # 0 with parameter (A1o,1,%10), where A\ is obtained
from oo by adding a zero on the left, and Wy o C ¥y .

— If —ept1 — eptr € Un, then Oopy129g0+2(m) # O with the parameter
(M,1,1, U4 1), where Ay 1 is obtained from Ao o by adding a zero on each side
of the semicolon, and Voo U {—ep,+1 + fgo+1} C W1,1. O2py42,2¢, () # 0
with parameter (Xo1,1, Wo.1), where Ao 1 is obtained from oo by adding
a zero on the right, and Voo C Uy 5.

Remark 4.2. — In the Paul’s theorem [21] Theorem 15], there are exactly four pairs
of integers (p, ¢) with p + ¢ = 2n or 2n + 2 such that 6, ,(7) # 0. But there is only
one pair of integers (p, q) with p + ¢ = 2n + 2 such that 6, ,(7) is a non-zero limit of
discrete series representation of O(p, q).

4.2. Translation. — Let ¢ : Wr — O(M) be a L-parameter of Sp(V'), where M is a
(2n + 1)-dimensional orthogonal space. Let u be the infinitesimal character associated
to ¢ and II(y) the L-packet associated to ¢. Let m € II(¢) be a limit of discrete series
representation of Sp(V') with Langlands-Vogan parameter (¢, 7). Suppose ¢ admits a
decomposition as in Example (1). Let Agsp be the Harish-Chandra parameter of
generic discrete series representation of Sps,,, (R) as in Example

Proposition 4.3. — Let © be a generic discrete series representation of Sp(V)
corresponding to the basepoint xpsp. Then 6y, () is a generic discrete series rep-

, n—+2,n), if n 1s even .
resentation of O(V') with signature (p,q) = ( ) / , which
(n+1,n+1), ifnisodd
corresponds to the basepoint xp 0.
Proof. — This proposition follows from our description of the Harish-Chandra pa-

rameters of the basepoints x5, and zj,0 in Example and the explicit theta
correspondence in Theorem In the following, we provide the explicit computation
according to the parity of n.

(1) Assume n is even. The Harish-Chandra parameter Aq g, of 7 has the form
(AL, A3, s A1y —Ans oo —A2),
and the corresponding root system is generated by the simple roots
{er1 +en,—en —eg, -+ en +enyy, —2enyq}.

Hence by case 3 of theorem the Harish-Chandra parameter of 6y, (7) is the
pair ()\270, 17 \1’2,0), where

)\270 = (Ala )\37 e a)\n—lv 07 )\2) e a)\n)
and the corresponding root system

oo =(e1— f1,f1 —ea, -+ )€1 —fg7f% —egafg +e%>.
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Since A; > -+ > A\, > 0 and the root system is generated by the non-compact
simple roots, the parameter (Az,0, 1, U2 o) is exactly the Harish-Chandra parameter
of the generic discrete series representation of O(n + 2,n) as in Example As
a result, 0y, () is a generic discrete series of O(n + 2,n).

(2) Assume n is odd. The Harish-Chandra parameter Aq g, of 7 has the form

(A3, 3 Ay —Ane1, - 5 —A2),
and the corresponding root system is generated by the simple roots
Ve, = (e1+€n, —€n — €2, - y—€np —enT+3,2enT+1>.
Hence by case 3 of Theorem the Harish-Chandra parameter of 0y, () is
(Ao,2,1, g 2) where
Aoz = (A1, Az, Ans Ag, -, Ap—1,0).
and the corresponding root system
Voo =(er— fi,fr—e2  foor —€nr,ena — frp, fups —€npn, fosn +enpn).

Similarly, the parameter (Ao 2, Ug2) is exactly the Harish-Chandra parameter of
the generic discrete series representation of O(n + 1,n + 1) as in Example
Hence 0y, () is a generic discrete series of O(n +1,n + 1).

O

Now, suppose 7 is a limit of discrete series representation of Sp(V). Then the
Langlands-Vogan parameter (o,n) of m determines a Harish-Chandra parameter A, is
of the form

(/\17... ,/\17... 7/\k7"' ;/\k707"' ,0,_)\]67... 7_)\k’... 7_)\17... ’_/\1)7
N——

Pn,1 Pn,k z an,k dn,1

and a positive root system W¥,.
k k
Let ppo = > Pyt and ¢0 = > gy, and w = [5]. We set p, = p,0 + w and
=1 =1
@y = qn,0 +w. Note that
L n, if z=0 mod 2;
p n =
T ln—1, ifz=1 mod 2.
By Thereom we set
)‘n,0,0: (>\13"' 7>\13"' 7>\k7"’ 7)\k707"’ 70;>\13"' 7)\13"' 7)\167"’ 7)\k707"’ 70)7
—_——— —— ——— ——

Pn,1 Dk w an,1 qn.k w

and a root system V¥, o o obtained from W, as follows: for 1 <7 < p, and 1 < j < ¢,
the root e; — f; € ¥, 00 if and only if e; + ep—j41 € ¥y, According to the values of z
and w, we have:
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(1) If z=w =0 (i.e. case 3 of Theorem , then we have p = 2p, +2 and ¢ = 2¢,,.
The corresponding Harish-Chandra parameter is (A, 2,0,1, ¥y, 2.0), where Ay 29
is obtained from A, 0 by adding a zero on the left and ¥, oo C ¥, 20.

(2) If z = 2w > 0 (i.e. case 2 of Theorem [4.1]), there are two possible cases:

(a) If ep, o1 +€p, otz € Uy, then we have p = 2p, + 2 and ¢ = 2¢g,. The
corresponding Harish-Chandra parameter is (A 2,0, 1, ¥y 2,0), where A, 29
is obtained from A, o0 by adding a zero on the left side, and ¥, 5 ¢ contains
\II”LQO'

(b) If —ep, o411 — €p, otz € ¥y, then we have p = 2p, and ¢ = 2¢, + 2. The
corresponding Harish-Chandra parameter is (A, 0,2, 1, ¥y 0.2), where A, g2
is obtained from A, 2 by adding a zero on the right side, and ¥, ¢
contains ¥, o 0.

(3) If z = 2w+ 1 (i.e. case 4 of Theorem [L.1]), then we have p = 2p, + 2 and
q = 2¢, + 2. The corresponding Harish-Chandra parameter is (A, 11,1, ¥;1,1),
where A, 1,1 is obtained from A, oo by adding a zero on each side of the semicolon.
Moreover,

(a) if €py0+1 + €pnotz € \1177’ then €pyotw+l — fqn,o+w+l € \1177:1’1'

(b) If —ep, 041 = €p, o4z € ¥y, then —€p, o pwt1 + fo, 0+wt1 € Ypa1.

At last, we need to translate this Harish-Chandra parameter (A, 4,1, ¥, 45) of
fyv (7) into the Langlands-Vogan parameter of 0y, (), where (a,b) = (2,0), (0,2)
or (1,1), which depends on the Langlands-Vogan parameters (A, ¥,)) of .

(1) If (a,b) = (2,0), then the corresponding Harish-Chandra parameter is
An2,0 = (Ar o AL Ay A 0, 05 AT e Ay e A e A, 0,00, 0)
—_—— ——— —_———— ——

Pn,1 P,k w+1 qn,1 qn.k w

and a root system ¥, 59 D ¥, 5.
(2) If (a,b) = (0,2), then the corresponding Harish-Chandra parameter is

)\n,Q,OZ(Ah"' 7A17"' 7Ak7"' aAkaov"' 50;A17"' 7A17"' 7Ak7"' 7Ak707"' 70)
— —_—
Pn,1 Pn,k w dn,1 dn,k w+1

and a root system ¥, g2 D ¥, g0.
(3) If (a,b) = (1,1), then the corresponding Harish-Chandra parameter is

)\77,2,02()\17"' 7)‘17"' 7)‘]67"' 7Ak707"' 70;>\17"' 7>\17"' 7>\k7"' 7)‘]6707"' 70)
——— N—— —— ——

Pn,1 P,k w+1 qn,1 qn,k w—+1

and a root system ¥, 11 O ¥, g0.

Hence the corresponding Langlands-Vogan parameter of 6y~ (7) is the pair
(Oyv (), 0y (1)) given by

Oy (9) = By (Pn,i + ani)on, P2w +2)1
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and
9v,v’ (77)|A¢ =1
Conversely, we start with a limit of discrete series representation o of SO(p, ¢) with
p+ q = 2n + 2. Moreover, we assume the theta lift of o (as an O(p, ¢) representation)
is non-zero.
Let (cp',n') be the Langlands-Vogan parameter of o. By [21], Corollary 24], the
Harish-Chandra lifting of ¢ has the form

A\, :()\'1,...7)\'1,...7)\']“...7)\;“07...70;)\'1,...7)\'1,...7)\;“...7)\;“07...70)’
n —— ——

P . z+1 4,/ 4 q,7 5 P

n n

where A} > -+ > A\ > 0,2(p, ++ - +p, p+2+1) =pand 2(q, y+ -+ 2 ) = 4.
This implies ¢ has the decomposition

o =@ (Pni+ mai)or @2+ 2 + DL

Denote by 6(c) the corresponding representation of Sp,, (R). The theta correspon-
dence gives the Harish-Chandra lifting of (o) is

’

Ay =\ A A L 0, 0 =N A=A =)

Py P z+z qa.’ . q,’ 4

n n n n

and the Langlands parameter ¢ of 8(o) is given by

o = 8 (Pni + @i)ox, PRz +2) + D1

The component group A, is a subgroup of Awf. Moreover, the Vogan parameter is

gv,v’ () =nla,-
We summary our description of theta correspondence for symplectic-orthogonal dual

pairs in term of Langlands-Vogan parameters for limit of discrete series representations
in the following theorem.

Theorem 4.4. — (1) If 7 is a limit of discrete series representation of Sp(V') with
Langlands-Vogan parameter (p,n), where

Y= @5:1(1’71,1 + Qi) P @(22 + 1)1,

with pyi, @i, 2 €N, 1 =1,--- |k, Zle(pm +¢y,i) + 2 =n and py, is self-dual
irreducible representation of the Weil group Wr of dimension 2. Then there
exists a unique pair of even integers (p,q) such that p+q = 2n+2, and 0y, ()
is a limit of discrete series representation of O(p, q) with Langlands parameter

Oy (p), where

Oy (p) = By (Pyi + G,i) P @(22 +2)1.
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Moreover, we can regard the component group A, as a subgroup of Agv (@)
then 7
ov,v’ (77)|A¢ =1

(2) Let V' bea (2n + 2)-dimensional real orthogonal space with signature (p,q),
where p, q are even integers, and let 7 be a limit of discrete series representation
of O(V") with Langlands-Vogan parameter (¢',n'). Assume that 9V/1V(7Tl) #0.
Then the Langlands-Vogan parameter (v,n) of the representation Hv/y(wl) of
Sp(V) is given by

p=¢ =1, n=1a,.

4.3. The Tempered Case. — In this section, we recall the Langlands-Vogan
parametrization of parabolic inductions (cf. Proposition and the induction
principle of theta lifts (cf. Theorem , which allow us to reduce the proof of our
main theorem for the tempered case (cf. Theorem to the case of limit of discrete
series (i.e. Theorem [4.1).

4.3.1. Langlands parametrization of parabolic inductions. — Let H be a real sym-
plectic group or a real orthogonal group. Let Hy be the subgroup of H which is the
same type of H, i.e. Hy = Sp(Vp) or O(Vb') for some symplectic subspace Vo C V or
some orthogonal subspace VO/ Cc V'. Consider the parabolic subgroup P = M AN of
H with Levi factor

MA = HO X GLQ(R)S X GLl(R)t
where s,t are non-negative integers. The parabolically induced representations
IndGm® 70 x® 1,

have a unique irreducible Langlands quotient, where 7y is a limit of discrete series
of Hy, 7 is a relative limit of discrete series representation of GLa(R)® and x is
a quasi-character of GL;(R)’. Denote this unique irreducible Langlands quotient

S

representation by m = (o, 7, X)-
Let ¢ be the Langlands parameter associated to m with the decomposition

o= e, Pz + 1EPC.
where

1. \; are odd positive integers such that Ay > --- > A > 0;
2. pa,’s are self-dual irreducible representations of the Weil group W of dimension
2;

3. the ¢;, z are natural numbers for ¢ = 1,--- |k such that z + Zle c; = n;
4. C is the non self-dual part of .

Let 0o = ®F_,cipx, @(22+1)1 which is a Langlands parameter of Hy. Then II(p, H)
is the collection of all these Langlands quotients where 7y ranges over (g, Hp).
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Proposition 4.5. — [26l, Theorem 2.9| Taking Langlands quotients of parabolic
inductions gives a bijection between (o, H) and M(po, Hy).

Recall that by [27, Theorem 6.3], we have a natural bijection between II(¢, H)
(resp. I(wg, Hp)) and the set of irreducible representations of the component group
A, :=mo(C,) (resp. Ag,) of ¢ (resp. ¢g). The following diagram commutes

where the bijection on the left arrow is given by Proposition

4.3.2. Induction principle of theta lift. — Let (G,G') = (Spy,(R), O(p,q)) be the
symplectic-orthogonal dual pair with p+ ¢ = 2n+ 2 and w the oscillator representation
for the dual pair (G, G’). There are parabolic subgroups P = M AN and P =MAN
of G and G with Levi factor

MA=Sp, /(R) x GLy(R)* x GL; (R)*

and
M'A"=0(p,q) x GLy(R)® x GLq (R)*

where 2n' + 2s + ¢ = 2n and p/ + q/ =2n +2.

Recall that we denote by x. . the quasi-character x — sgn(z) = |z|~ of GLy(R) for
e € {1} and k € C. Let m = 7w(p, 7, Xe,x) be an irreducible admissible representation
of Sp,,, (R), which is the unique irreducible quotient of the standard module of p&T®x
with p a limit of discrete series representation of Sp,,,/ (R), 7 = ®7_;7 (4, v;) a relative
limit of discrete series of GLa(R)® and x = ®!_,X., », a character of GL;(R)! . As in
Theorem there is a unique pair of integers (p,, ql) with p/ + ql = 2n' 4 2 such that
0, o (p) is a non-zero limit of discrete series representation of o@p,q).

Theorem 4.6. — [21], Theorem 18| Let n,nl,p/, q/, s and t be non-negative integers

p_—q

as above. Let ey = (e1-(—1) = =

s o€t (=1)7= ). For the irreducible admissible
representation ™ = 7(p, T, Xe.x) Of SPay(R) as above, we have

Op.q(m) = Hp,q(ﬁ)(gp’,q’ (p), T, Xap,q,n)~

Remark 4.7. — We explain briefly the proof of above theorem to see that our choice
of root datum doesn’t affect the result. Let 7 be the proposed theta lift of 7 and
p =0y 4(p). We can arrange that  is a quotient of I = Ind%(p®7 ® .. ®1). Then
7’ is a constituent of I’ = Indg; (r @ 7" @xZ, ®1), where * is the contragredient
representation. By the induction principle, there is a non-zero G x G’-equivariant map
w — I x I'. Suppose 7 has a minimal K-type A. Then 7 occurs in the correspondence
and lifts to a constituent of I’ containing the K-type A’ which corresponds to A. This
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is minimal K-type of ', and hence a minimal K-type of I’. Since the minimal K-types
of I' have multiplicity one, 6, ,(7) = 7. As a result, our choice of root datum doesn’t
affect the result.

By Proposition and the identification Zl; = Z\%, this induction principle implies
our main result in the tempered case.

Theorem 4.8. — Let V be a 2n-dimensional symplectic space over R.

(1) Let 7 be a tempered representation of Sp(V') with Langlands-Vogan parameter
(p,m). Then there exists a unique pair of even integers (p,q) satisfying p+q = 2n+ 2
and a (2n+2)-dimensional orthogonal space V' with signature (p,q) such that 6, 4(r) is
a tempered representation of O(p, q) with Langlands- Vogan parameter (0, 4(v), 0, 4(n)),
where 0y 4(¢) = ¢ + 1. Then the component group A, is a subgroup of Ag, (), and
we have

Op.q(n)la, =1

(2) Let V' be a (2n + 2)-dimensional real orthogonal space with signature (p,q),
where p,q are even integers, and let 7 be a tempered representation of O(V/) with
Langlands-Vogan parameter (¢',n'). Assume that HV/’V(W/) # 0. Then the Langlands-
Vogan parameter (¢,n) of the tempered representation Hvly(w,) of Sp(V) is given
by

p=¢ -1, n=1la,
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