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Abstract. — In this note, we make explicit the correspondence between Harish-
Chandra parameters and Langlands-Vogan parameters for symplectic groups and
orthogonal groups of equal rank over reals. As an application, we reformulate Moeglin’s
results [18] and Paul’s work [21] on the Howe correspondence for symplectic-orthogonal
dual pairs using Langlands-Vogan parameters.
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1. Introduction

Throughout this paper, we fix an additive character ψ : R → C×, set Γ = {1, σ}
the Galois group of C/R and by a representation of a real reductive group G, we mean
a smooth Fréchet representation of moderate growth.

Given a real reductive group G, let g be the Lie algebra of G and we fix a maximal
compact subgroup K of G. Wallach [29, Chapter 11] introduced an equivalence
between the category of smooth Fréchet representations of moderate growth of G and
the category of admissible finitely generated (g,K)-modules. Since any such (g,K)-
module can be parametrized by Harish-Chandra parameters, so are the representations
of G.

Let (V, (·, ·)) be a 2n-dimensional real vector space equipped with a non-degenerate
symplectic bilinear form and (V

′
, 〈·, ·〉) be a (2n + 2)-dimensional real vector space

equipped with a symmetric bilinear form. Let G = Sp(V ) and G′ = O(V
′
) be the

isometry groups of V and V
′
respectively. Moreover, let V = V ⊗V ′ equipped with the

symplectic form (·, ·)⊗ 〈·, ·〉 and we denote by Ŝp(V) the metaplectic group associated
to V. The pair (G,G′) is a reductive dual pair in the symplectic group Sp(V) ([17,
§II.1]), and there is a natural map

ι : Sp(V )×O(V
′
)→ Sp(V),

which can be lifted to a homomorphism(1):

(1.1) ιV,V ′ : Sp(V )×O(V
′
)→ Ŝp(V).

For the dual pair (G,G′), Roger Howe [14] introduced the theta correspondence
between the representations of G and the representations of G′. His construction
used the Weil representation ωψ of Ŝp(V)(cf. [17, §I.1]), which is an extension of
the oscillating representation of the Heisenberg group H(V) = V⊕ R, depending on
the choice of ψ. If π and π

′
are irreducible admissible representations of G and G′

(1)Such a splitting of Ŝp(V)→ Sp(V) is not unique, which depends on some auxiliary data described
in [10, §3.2].
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respectively, we say π and π
′
correspond if π⊗π′ is a quotient of the Weil representation

ωψ of Ŝp(V), restricted to G×G′, denoted by θV ′ ,V (π
′
) = π and θV,V ′ (π) = π

′
. If V ′

has signature (p, q), we will replace the notation θV,V ′ by θp,q.
Assume (p, q) is the signature of the symmetric bilinear form 〈·, ·〉. Moeglin [18]

computed a significant part of the full correspondence where p and q are both even.
Later on, using the Harish-Chandra parameter, Paul [21, Theorem 15] gave a complete
and explicit description of the correspondence by filling in the case(2)with p and q odd.
Their description of the explicit theta correspondence for the symplectic-orthogonal
dual pairs uses Harish-Chandra parameters.

On the other hand, we can parametrize the representations of real reductive groups
via Langlands-Vogan parameters, which is a more direct parametrization compared
to Harish-Chandra parametrization. The goal of this paper is to translate Moeglin’s
results and Paul’s results for the limit of discrete series representations via Langlands-
Vogan parameters of the smooth Fréchet representations of moderate growth, which
will serve as an input for our forthcoming paper on GGP conjecture for Fourier-Jacobi
case over reals. As a consequence, we also formulate such translation for tempered
representations.

We begin by giving a precise statement of the results (cf. Thm. 1.1 and Thm. 1.2).

1.1. Langlands-Vogan parameters. — Let H = G or G′. We fix a pinning of the
complex dual group Hd

SplHd = (B,T∗, {Xα}),

where B is a Borel subgroup of Hd, T∗ is a torus of B, {Xα} is the set of root vectors
for the simple roots of T∗ in B(cf. §2.1.3). Let WR be the Weil group of R. The
Langlands dual group LH of H associated with the pinning SplHd is the semi-direct
product Hd oWR, where the action of WR on Hd factors through the projection
pWR : WR → Gal(C/R) stabilizing SplHd . We remark that LH only depends on
its inner class. A Langlands parameter (or L-parameter) of H is a continuous
morphism ϕ : WR → LH satisfying the following two conditions:

1. pR ◦ ϕ = IdWR , where pR : LH →WR;
2. the image of the restriction map ϕ|C× : C× → Hd × C× consists of the elements

which is semi-simple in Hd.

In particular, a Langlands parameter of H is called tempered if its image is bounded.
Recall that the irreducible representations of WR have dimension either 1 or 2 as

WR has an abelian subgroup of index 2.

(1) The 1-dimensional representations of WR are the quasi-characters of W ab
R = R×,

which are of the form χε,s(x) = sgn(x)
ε−1
2 |x|s, for ε ∈ {±1} and s ∈ C.

(2)In this paper, we consider the equal rank case, which implies that p, q are both even.
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(2) The irreducible representations of WR of dimension 2 are of the form

ρm,s = IndWR
C×χm,s,

for χm,s(z) = zm · (zz̄)−m/2 · |z|sC a quasi-character of C× with m ∈ Z and s ∈ C.
We will denote ρm,0 by ρm.

Thus, a Langlands parameter ϕ of H can be represented using its decomposition into
direct sum of irreducible representations of WR.

The complex dual group Hd of H acts by conjugation on the set of Langlands
parameters of H. We denote by Φ(H) the set of Hd-conjugacy classes of the Langlands
parameters of H and by Φtemp(H) the set of conjugacy classes of the tempered
Langlands parameters. The classification theorem of Langlands says that there exists
a partition of the set Π(H) of the equivalent classes of irreducible representations of
H:

Π(H) =
∐

ϕ∈Φ(H)

Π(ϕ,H),

where Π(ϕ,H)’s are finite sets of irreducible representations of H, called the L-packets
(or Langlands packets). This partition satisfies a number of properties and among
them, the most important ones for us are the followings:

1. all the elements of a L-packet admit the same infinitesimal character;
2. for the set Πtemp(H) of all tempered representations of H, we have

Πtemp(H) =
∐

ϕ∈Φtemp(H)

Π(ϕ,H).

Suppose H is a real form of equal rank. For each Langlands parameter ϕ of H,
Vogan associated it to a finite set Π(ϕ) of irreducible representations of H̃ with H̃
running over all pure inner forms of H (cf. §3.2.4 or [27]), called the Vogan L-packet
associated to ϕ. It is known that there is a natural bijection between Π(ϕ) and the
set of irreducible representations of the finite group Aϕ = π0(Cϕ) ([27, Theorem 6.3]),
where Cϕ is the centralizer of the image of ϕ in Hd.

In §3.3, we will describe such a bijection for limit of discrete series L-parameter ϕ
of H

Âϕ → Π(ϕ)

which maps the identity of Âϕ to the generic representation in Π(ϕ). Here we say a
representation is generic if it admits a Whittaker model ([1, §5]).

1.2. Main result. — let π be a limit of discrete series representation of G with the
Langlands-Vogan parameter (ϕ, η). Suppose

ϕ = ⊕ki=1ciρλi
⊕

(2z + 1)1,

where
1. λi are odd positive integers such that λ1 > · · · > λk > 0;
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2. ρλi ’s are self-dual irreducible representations of the Weil group WR of dimension
2;

3. ci, z ∈ N, i = 1, · · · , k, with z +
∑k
i=1 ci = n.

Then the component group Aϕ is a quotient of ⊕ri=1(Z/2Z)ai
⊕
⊕zj=1(Z/2Z)bj with

r =
∑k
i=1 ci. The signature of the character η gives a partition of ci = pη,i + qη,i,

where pη,i and qη,i denote the number of positive signatures and negative signatures
at the component corresponding to ρλi respectively.

Theorem 1.1. — Let V be a 2n-dimensional symplectic space over R.
(1) Let π be a limit of discrete series representation of Sp(V ) with Langlands-Vogan

parameter (ϕ, η), where

ϕ = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2z + 1)1,

with pη,i, qη,i, z ∈ N, i = 1, · · · , k, z+
∑k
i=1(pη,i+qη,i) = n and ρλi self-dual irreducible

representation of the Weil group WR of dimension 2 with λi an odd integer. Then
there exists a unique pair of even integers (p, q) satisfying p + q = 2n + 2 and a
(2n + 2)-dimensional orthogonal space V

′
with signature (p, q) such that θp,q(π) is

a limit of discrete series representation of O(V
′
) with Langlands-Vogan parameter

(θp,q(ϕ), θp,q(η)), where

θp,q(ϕ) = ϕ+ 1 = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2z + 2)1.

Then the component group Aϕ is a subgroup of Aθp,q(ϕ), and we have

θp,q(η)|Aϕ = η.

(2) Let V
′
be a (2n + 2)-dimensional real orthogonal space with signature (p, q),

where p, q are even integers, and let π
′
be a limit of discrete series representation of

O(V
′
) with Langlands-Vogan parameter (ϕ

′
, η
′
). Assume that θV ′ ,V (π

′
) 6= 0. Then the

Langlands-Vogan parameter (ϕ, η) of the representation θV ′ ,V (π
′
) of Sp(V ) is given by

ϕ = ϕ
′
− 1, η = η

′
|Aϕ .

Moreover, by the Langlands-Vogan parametrization of parabolic inductions and the
induction principle of theta lifts, the main result of the tempered case can be reduced
to the limit of discrete series case.

Theorem 1.2. — Let V be a 2n-dimensional symplectic space over R.
(1) Let π be a tempered representation of Sp(V ) with Langlands-Vogan parameter

(ϕ, η). Then there exists a unique pair of even integers (p, q) satisfying p+ q = 2n+ 2

and a (2n+2)-dimensional orthogonal space V
′
with signature (p, q) such that θp,q(π) is

a tempered representation of O(p, q) with Langlands-Vogan parameter (θp,q(ϕ), θp,q(η)),
where θp,q(ϕ) = ϕ+ 1. Then the component group Aϕ is a subgroup of Aθp,q(ϕ), and
we have

θp,q(η)|Aϕ = η.
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(2) Let V
′
be a (2n + 2)-dimensional real orthogonal space with signature (p, q),

where p, q are even integers, and let π
′
be a tempered representation of O(V

′
) with

Langlands-Vogan parameter (ϕ
′
, η
′
). Assume that θV ′ ,V (π

′
) 6= 0. Then the Langlands-

Vogan parameter (ϕ, η) of the tempered representation θV ′ ,V (π
′
) of Sp(V ) is given

by
ϕ = ϕ

′
− 1, η = η

′
|Aϕ .

Remark 1.3. — The corresponding reinterpretation for real unitary groups case
has been done in [15, Section 5.3.1]; for metaplectic-orthogonal dual pairs, the rein-
terpretation is trivial since Gan, Gross and Prasad [9] defined the Langlands-Vogan
parameters of metaplectic groups via theta correspondence.

1.3. Acknowledgement. — This note serves as a preparation for a forthcoming
paper, initially started from a discussion with Hang Xue. During the preparation of
this note, Shanwen Wang has benefited by the discussions with Wenwei Li, Cai Li,
David Renard, Hang Xue and Lei Zhang. Part of this article is written during the
visits of first author at BIMCR, Peking University and HongKong University. The
first author would like to thank Wenwei Li and Kei Yuen Chan for their hospitalities.
The third author would like to thank Jeffrey Adams for helpful discussions about the
material to be found in Section 3.2. Finally, the authors would like to express their
special gratitude to Hang Xue for his constant support.

2. Preliminary

We consider the following real classical groups of rank n with n ≥ 1:
1. The symplectic group Sp2n. Its Langlands dual group is SO2n+1(C) and its
L-group is the direct product SO2n+1(C)×WR.

2. The even split special orthogonal group SOs
2n, n ≥ 2. Its Langlands dual group

is SO2n(C) and its L-group is the direct product SO2n(C)×WR.
3. The quasi-split even special orthogonal group SOqs

2n, n ≥ 1. Its Langlands dual
is SO2n(C) and its L-group is the semi-direct product SO2n(C) oWR.

2.1. Complex reductive groups. —

2.1.1. Based Root Datum. — Let G be a complex reductive group. A Borel pair
(B,T) of G is a pair consisting of a maximal torus T of G and a Borel subgroup B

containing T. For any Borel pair (B,T) of G, let X(T) be the group of characters of
T, Φ the set of roots, X∨(T) the group of cocharacters of T and Φ∨ the set of coroots.
We denote the natural pairing X(T)×X∨(T)→ Z by 〈·, ·〉. We also fix the canonical
isomorphisms:

t ∼= X∨(T)⊗Z C, t∨ ∼= X(T)⊗Z C,
where t = Lie(T).
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Definition 2.1. — 1. The root datum of G is a 4-tuple

R(G,T) = (X(T),Φ, X(T)∨,Φ∨)

where Φ (resp. Φ∨) is the set of roots (resp. coroots) associated to the pair
(G,T).

2. Fix a Borel pair (B,T) of G. Let ∆ (resp. ∆∨) be the set of positive
simple roots (resp. coroots) corresponding to B. We call the 6-tuple Db =

(X,Φ,∆, X∨,Φ∨,∆∨) the based root datum of G associated to (B,T).

Up to a canonical isomorphism, the 6-tuple is independent of the choice of Borel
pair: if (B

′
,T
′
) is another Borel pair of G, then there exists g ∈ G such that Ad(g)

carries (B
′
,T
′
) to (B,T) and the induced isomorphism on based root datum Db of G

is independent of g.

2.1.2. Automorphisms. — We denote by Inn(G), Aut(G) and Out(G), the group of
inner automorphisms of G, the group of (holomorphic) automorphisms of G and the
group of outer automorphisms of G respectively. There exists a short exact sequence
of groups

1→ Inn(G)→ Aut(G)→ Out(G)→ 1.(2.1)

The group Aut(G) acts on the set of Borel pairs of G with maximal split torus T.
If σ ∈ Aut(G), the Borel pairs (σ(B), σ(T)) and (B,T) are conjugate by an element
gσ ∈ G, which is uniquely determined by σ up to an element of T (cf. [8, Prop. 6.2.11
(2)]). This induces a group homomorphism Aut(G)→ Aut(R(G,T),∆) defined by
σ 7→ Ad(gσ) ◦ σ, where Aut(R(G,T),∆) is the group consisting of automorphisms of
Db. By [8, Prop. 7.1.6], there is an exact sequence

(2.2) 1→ Inn(G)→ Aut(G)→ Aut(R(G,T),∆)→ 1,

identifying Out(G) with Aut(R(G,T),∆).

2.1.3. Pinning and L-group. —

Definition 2.2. — A pinning for G is a triple SplG = (B,T, {Xα}α∈∆), where
(B,T) is a Borel pair of G, ∆ is the set of simple roots associated to (B,T) and Xα

is a α-root vector of T in Lie(B).

The group G acts on the set of pinnings by conjugation. Given a pinning SplG, we
can associate it with an isomorphism

sSplG : Out(G) ∼= StabAut(G)(SplG) ⊂ Aut(G)

and this is a splitting of the exact sequence (2.1). We call a splitting of the exact
sequence (2.1) distinguished if it fixes a pinning for G.

The complex dual group Gd of G is the complex, connected reductive group
whose root datum is isomorphic to R(G,T)∨. Fix such an isomorphism of R(G,T)∨

with R(Gd,Td). Through the natural Galois action Γ on R(G,T), we obtain a
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homomorphism Γ → Out(Gd), using the identification of two short sequences (2.1)
and (2.2). By composing with the section sSpl

Gd
defined by a pinning SplGd , we

obtain an action of Γ on Gd which preserves the pinning SplGd . The Langlands group
LG of G associated with the pinning SplGd is the semi-direct product Gd oWR,
where the action of WR on Gd factors through the projection pWR : WR → Γ and it
stabilizes SplGd .

2.2. Root systems of real reductive groups. — In the study of connected
semisimple groups up to central isogeny, it is convenient to work with a coarser notion
than a root datum, in which we relax the Z-structure to a Q-structure and remove
the explicit mention of the coroots.

Definition 2.3. — A root system is a pair (V,Φ) consisting of a finite-dimensional
Q-vector space V and a finite spanning set Φ ⊂ V −{0} such that for each α ∈ Φ there
exists a reflection sα : v 7→ v − λ(v)α with λ ∈ V ∗ such that sα(Φ) = Φ, sα(α) = −α
and λ(Φ) ⊂ Z.

Remark 2.4. — If (X,Φ, X∨,Φ∨) is a root datum, then the Q-span V of Φ together
with Φ is a root system.

Let G be a complex reductive group. A real form of a complex reductive group G

is an antiholomorphic involutive automorphism σ of G.

Definition 2.5. — [19, Définition 5.1] Let (G, σG) be a real form with complex
reductive group G. A Borel pair (B,T) of a complex reductive group G is called
fundamental if the following conditions are satisfied:

(i) T = TσG is a maximally compact subgroup of G = GσG ;
(ii) The set of roots of T in B is stable under −σG.
Moreover, a fundamental Borel pair (B,T) of G is called of Whittaker type if all

the imaginary simple roots of T in B are non-compact.

By [6, Prop. 6.24], a real form (G, σG) has a fundamental Borel pair of Whittaker
type if and only if (G, σG) is quasi-split. This applies to real symplectic groups and
real orthogonal groups of equal rank.

Let (G, σG) be a quasi-split real form and we fix a maximal torus T of G. Let
g (resp. t) be the Lie algebra of G (resp. T). Then we have a root system Φ(g, t)

associated to the pair (g, t). Choose a simple root system ∆(g, t) whose elements are
non-compact roots. This choice determines a Borel subgroup B of G. Moreover, the
Borel pair (B,T) is a fundamental Borel pair of Whittaker type of G.

Let Ψ be the system of positive roots generated by ∆ and let Ψc ⊂ Ψ be the subset
of compact positive roots. We set

ρ(Ψ) =
1

2

∑
α∈Ψ

α and ρc(Ψ) =
1

2

∑
α∈Ψc

α.
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Note that ρc(Ψ) is independent of the choice of the set of positive roots and we simply
denote them by ρc respectively.

2.2.1. Symplectic case. — Let G = Sp2n(R) and let (G, σG) be the real form corre-
sponding to G. Let g be the Lie algebra of G. The maximally compact subgroup of G
is

T = {
(

diag(cos t1,··· ,cos tn) diag(sin t1,··· ,sin tn)
diag(− sin t1,··· ,− sin tn) diag(cos t1,··· ,cos tn)

)
: ti ∈ R, 1 ≤ i ≤ n}.

The Lie algebra of T is

(2.3) t0 = {
(

0n diag(t1,··· ,tn)
diag(−t1,··· ,−tn) 0n

)
: ti ∈ R, 1 ≤ i ≤ n}.

Let t be the complexification of t0. For 1 ≤ i ≤ n, we define the characters of t:

ei :
(

0n diag(t1,··· ,tn)
diag(−t1,··· ,−tn) 0n

)
∈ t 7→ 2iti ∈ C.

Then we have t∗ = ⊕ni=1Cei and the set of roots is

Φ(g, t) = {±ei ± ej : 1 ≤ i < j ≤ n} ∪ {±2ei : 1 ≤ i ≤ n}.

Let ∆(g, t) be the subset {ei + en+1−i,−en+1−i − ei+1 : 1 ≤ i ≤ n− 1} of Φ(g, t),
which is a set of non-compact simple roots. We denote by Ψ the set of positive roots
generated by ∆(g, t). Moreover, the subset of positive compact roots of Φ(g, t) is
Φ+
c = {ei − ej : 1 ≤ i < j ≤ n}. This based root datum determines a fundamental

Borel pair of Whittaker type of G.

2.2.2. Orthogonal case. — Let G = O(p, q) with p ≥ q even. Let (G, σG) be the real
form corresponding to G. Let g be the Lie algebra of G. Let p0 = p

2 and q0 = q
2 . The

maximally compact subgroup T of G consists of the following matrices:

diag(( cos t1 sin t1
− sin t1 cos t1

), · · · , ( cos tp0 sin tp0
− sin tp0 cos tp0

), ( cos s1 sin s1
− sin s1 cos s1

), · · · , ( cos sq0 sin sq0
− sin sq0 cos sq0

)),

with ti, sj ∈ R.
For t ∈ R, we denote the matrix ( 0 t

−t 0 ) by g(t). The Lie algebra t0 of T consists of
matrices {diag(g(t1), · · · , g(tp0), g(s1), · · · , g(sq0)) with ti, sj ∈ R for 1 ≤ i ≤ p0 and
1 ≤ j ≤ q0. Let t be the complexification of t0. For 1 ≤ i ≤ p0 and 1 ≤ j ≤ q0, we
define the characters ei and fj of t by the following laws:

ei : diag(g(t1), · · · , g(tp0), g(s1), · · · , g(sq0)) 7→ 2iti ∈ C,

fj : diag(g(t1), · · · , g(tp0), g(s1), · · · , g(sq0)) 7→ 2isj ∈ C.
Then we have t∗ = ⊕p0i=1Cei

⊕
⊕q0j=1Cfj and the set of roots is

Φ(g, t) ={±ei ± ej : 1 ≤ i < j ≤ p0} ∪ {±fi ± fj : 1 ≤ i < j ≤ q0}
∪ {±ei ± fj : 1 ≤ i ≤ p0, 1 ≤ j ≤ q0}

Let ∆(g, t) be the subset of Φ(g, t) defined as follows:
1. If p = q or p = q + 2, then

∆(g, t) = {ei − fi, fi − ei+1|1 ≤ i ≤ q0} ∪ {ep0 + fq0};
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2. If p > q + 2, then ∆(g, t) is a set of following non-compact simple roots:

{ei − fi, fi − ei+1|1 ≤ i ≤ q0} ∪ {ej − ej+1|q0 + 1 ≤ j ≤ p0} ∪ {ep0−1 + ep0}.

We denote by Ψ the set of positive roots generated by ∆(g, t). Moreover, the subset
of positive compact roots Φ+

c of Φ(g, t) is

{ei − ej : 1 ≤ i < j ≤ p0} ∪ {fi − fj : 1 ≤ i < j ≤ q0}.

This based root datum determines a fundamental Borel pair of Whittaker type of G.

2.3. Generalities on real forms and Cartan involutions. — We recall some
structure theories of real reductive groups and the parameterization of real forms. Our
main reference is [4].

Definition 2.6. — Let G be a complex reductive group.
1. We say that two real forms σ1, σ2 are inner to each other, or in the same inner

class, if σ1σ
−1
2 is an inner automorphism of G.

2. We say that two real forms σ1, σ2 are equivalent, if they are conjugate by an
inner automorphism of G.

3. A real form σ of G is said to be a compact real form if Gσ is compact and meets
every component of G.

Given a real reductive group G, it is equivalent to provide a real form σG, which
satisfies (G⊗R C)σG = G.

Remark 2.7. — The standard definition of equivalence of real forms (cf. [22, Section
III.1]) allows conjugation by Aut(G). But since we are interested in the inner class,
we follow the definition of Adams and Taïbi in [4]. Moreover, for a real form σ of
G, by [4, Lemma 8.1], the set of equivalent classes of real forms in the inner class
of σ is parametrized by H1(σ,Gad), where Gad is the adjoint group. Explicitly, the
map is cl(h) 7→ [int(h) ◦ σ]. By [4, Lemma 2.4], for an equivalence class [σ], we have a
well-defined pointed set H1([σ],Gad) = H1(σ,Gad).

Remark 2.8. — By [4, Lemma 3.4], our definition of compact real form is equivalent
to the definition of Mostow [20, Section 2], which defines a compact real form to be a
compact subgroup GK of G such that

Lie(G) = Lie(GK)⊕ i · Lie(GK),

and GK meets every connected component of G. The bijection is given by σ 7→ Gσ.
Every complex reductive group has a compact real form (Weyl, Chevalley, Mostow [20,
Lemma 6.2]), and the uniqueness is up to the G0 conjugation (Cartan, Hochschild,
Mostow [13, Ch. XV], [20, Theorem 3.1]), where G0 is the identity component of G.

Cartan involution provides a description of real forms in terms of holomorphic
involutions which is better suited to our purposes.
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Definition 2.9. — A Cartan involution for (G, σ), where σ is a real form of complex
reductive group G, is a holomorphic involutive automorphism θ of G, commuting with
σ, such that θσ is a compact real form of G.

The existence and uniqueness (up to conjugation by Inn(G0)) of Cartan involution,
and the correspondence between

{antiholomorphic involutive automorphisms of G}/Inn(G0)

and
{holomorphic involutive automorphisms of G}/Inn(G0)

induced by the correspondence between real forms and Cartan involutions, are given
by [4, Theorem 3.13], based on Remark 2.8. The following construction also gives an
explanation.

Fix a Borel pair (B,T) of G. If σ is a real form of G and θ is a Cartan involution
for (G, σ), then both σ and θ naturally act on the based root datum Db attached to
(B,T), giving rise to two involutions σ, θ ∈ Aut(R(G,T),∆), which are also seen as
elements of the subgroup Out(G)[2] of order 2 elements in Out(G). They are related
by σθ = −w0, where w0 is the longest element of the Weyl group of Db and −1 is
the inversion automorphism of T. Note that w0 is invariant under Aut(R(G,T),∆),
and so ι := −w0 is a central involution in Out(G). As a result, we see that the set of
inner classes of real forms of G can be parametrized by Out(G)[2], and we say that a
real form σ lies in the inner class defined by δ ∈ Out(G)[2] if ιδ = σ. We also say its
corresponding Cartan involution lies in the inner class defined by δ.

Definition 2.10. — The real forms in the inner class defined by 1 ∈ Out(G)[2] are
called of equal rank.

Every real form G(R) in this inner class contains a compact Cartan subgroup, and
every Cartan involution in this inner class is contained in Inn(G). The reason why this
inner class is of our interest is that a necessary and sufficient condition for G(R) to
admit discrete series is that it has a compact Cartan subgroup, by [11, Theorem 13].

For an inner class δ ∈ Out(G)[2] and a pinning SplG = (B,T, {Xα}α∈∆),
there is a unique real form σqs(δ,SplG) of G preserving SplG and such that
σqs(δ,SplG) = ιδ, and it is naturally a quasi-split real form(3). Since for g ∈ Gad,
we have σqs(δ, int(g)(SplG)) = int(g) ◦ σqs(δ,SplG) ◦ int(g)−1, the equivalence class
of σqs(δ,SplG) does not depend on the choice of SplG. We denote this unique
equivalence class of quasi-split forms in the inner class defined by δ as [σqs(δ)]. Denote
its corresponding (inner class of) Cartan involution [θqs(δ)].

Conversely, the above construction contains all quasisplit real forms of G. The
conjugacy class of quasi-split real forms has a particular interest as they can be
characterized by Borel pairs with special properties.

(3)A real form is called quasi-split if it preserves a Borel subgroup of G.
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Definition 2.11. — We say a real form is quasi-compact if one (equivalently, any)
of its Cartan involutions is distinguished.

For each pinning SplG, each inner class δ ∈ Out(G)[2] contains a unique quasi-
compact real form σqc(δ,SplG), whose corresponding (inner class of) Cartan invo-
lution is denoted by θqc(δ,SplG) ([5, Section 5]). Similarly, the equivalent class of
σqc(δ,SplG) does not depend on the choice of SplG. We denote this unique class
of quasi-compact forms in the inner class defined by δ as [σqc(δ)]. Denote its corre-
sponding (inner class of) Cartan involution [θqc(δ)]. Notice that an inner involution
is distinguished if and only if it is the identity; this is the Cartan involution of the
compact real form, i.e. 1 ∈ [θqc(1)].

Remark 2.12. — Similarly to Remark 2.7, for a Cartan involution θ of G, the set
of equivalence classes of Cartan involutions in the inner class of θ is parametrized
by H1(θ,Gad), where Gad is the adjoint group. Explicitly, the map is given by
cl(h) 7→ [int(h) ◦ θ]. Again by [4, Lemma 2.4], for equivalence class [θ], we have a
well-defined pointed set H1([θ],Gad) = H1(θ,Gad).

Furthermore, for the corresponding Cartan involution θ and real form σ, the
following diagram commutes:

H1(σ,Gad) {real forms inner to σ}

H1(θ,Gad) {Cartan involutions inner to θ}

∼=

∼= ∼=
∼=

Here H1(σ,Gad) ∼= H1(θ,Gad) is the canonical bijection of pointed sets ([4,
Lemma 8.4]).

3. Parameters for real reductive group of equal rank

Let G be a real reductive group of equal rank. Let g be the Lie algebra of GC and
K a maximal compact subgroup of GC. We fix a fundamental Borel pair (B∗,T∗)

of Whittaker type and the based root datum (X,Φ,∆∗, X
∨,Φ∨,∆∨∗ ) associated to

(B∗,T∗). Let t be the Lie algebra of T∗ and t0 be the Lie algebra of T∗ ∩G. Let Ψ∗
be the set of positive roots generated by ∆∗ and Ψc,∗ be its subset of compact positive
roots. For λ ∈ t∗, we say λ is regular (resp. integral) if 〈λ, α∨〉 ∈ Z \ {0} (resp. is in
Z) for all α ∈ ∆∗. Let ρc be the half sum of the roots in Ψc,∗.

3.1. Harish-Chandra parameters. — Let Rep(G) be the set of irreducible repre-
sentations of G. For any π ∈ Rep(G), it has a (g,K)-module structure. As a result,
we have following two data attached to π:

(1) There is an “infinitesimal character map”

µ : Rep(G)→ HomC−alg(Z(g),C), π 7→ µπ,
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and by Harish-Chandra’s finiteness theorem [28, Theorem 5.5.6], this map has finite
fibres. By Harish-Chandra homomorphism (4), we can lift the infinitesimal character
µπ to a character of t and such a lifting is not unique. We say an infinitesimal character
is regular (resp. integral) if one of its liftings is regular (resp. integral). Note that if
one lifting of µπ is regular (resp. integral), then all the liftings of µπ are regular (resp.
integral). We say π is a limit of discrete series if its infinitesimal character is integral.

(2) The restriction of π to K can be decomposed into a completed direct sum of
irreducible representations of K. An irreducible representation τ of K appearing in
the decomposition of π|K is called a K-type of π, which can be parameterized by its
highest weight µτ ∈ t∗. Vogan defined a norm on the set of K-types of π as following:

‖τ‖ :=
√
〈µτ + 2ρc, µτ + 2ρc〉.

The minimal K-type of π is a K-type of π with minimal norm among all K-types of
π (cf. [24, Definition 5.1]).

Let π be an irreducible representation of G with integral infinitesimal character
µπ. Suppose τ0 is the minimal K-type of π. Consider the set Y of pairs (λ,Ψ), where
λ ∈ it∗0 ⊂ t∗ is a lifting of µπ, and Ψ ⊂ Φ is the set of positive roots with respect to λ
satisfying:
(a) Ψc,∗ ⊂ Ψ;
(b) λ is dominant with respect to Ψ;
(c) if a simple root α ∈ Ψ satisfies 〈λ, α∨〉 = 0, then α is non-compact.
Then by [26, Corollary 3.44], there is only one pair (λπ,Ψπ) ∈ Y satisfying the
equation

µτ0 = λπ + ρ(Ψπ)− 2ρc,

where ρ(Ψπ) is the half sum of the roots in Ψπ. We call the triple (λπ,Ψπ, µτ0) the
Harish-Chandra parameter of π.

Definition 3.1. — A limit of discrete series Harish-Chandra parameter of G is a
pair (λd,Ψ), where λd ∈ it∗0 ⊂ t∗ is integral, and Ψ ⊂ Φ is the set of positive roots
with respect to λd satisfying:
(a) Ψc,∗ ⊂ Ψ;
(b) λd is dominant with respect to Ψ;
(c) if a simple root α ∈ Ψ satisfies 〈λd, α∨〉 = 0, then α is non-compact.

(4)The Poincare-Birkhoff-Witt theorem implies that we have a decomposition of U(g):

U(g) = U(t)⊕ (U(g)n+ + n−U(g)),

and the projection of Z(g) to the second factor lies in U(g)n+ ∩ n−U(g). Let γ
′

: Z(g)→ Z(t) be the
projection on to the first factor. Let ρ be the half the sum of the positive roots associated to Φ. Let
tρ : t→ U(t) be the translation operator tρ(h) = h−ρ(h)1. The composition γ := tρ◦γ

′
: Z(g)→ U(t)

is a homomorphism, known as the Harish-Chandra homomorphism. The image of the Harish-Chandra
homomorphism is invariant under the action of Weyl group, and the map is actually an isomorphism
γ : Z(g)→ U(t)W = S(t)W = C[t∗]W .
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Remark 3.2. — Given a limit of discrete series Harish-Chandra parameter (λd,Ψ)

of G, if λd is regular, then conditions (a), (b) and (c) uniquely determine the set Ψ.
In this case, we call λd a discrete series Harish-Chandra parameter of G. If λd is not
regular, there are several possible Ψ’s admitting the same conditions (a), (b) and (c).

3.1.1. Symplectic case. — The explicit description of the Harish-Chandra parameters
of the representations of real symplectic groups can be given as follows. Let Ψ and ∆

be the sets of roots and simple roots of G = Sp2n(R) defined in §2.2.1 respectively
and let π be a limit of discrete series representation of G. Then the Harish-Chandra
parameter (λπ,Ψπ, µπ) of π, where

• µπ is the highest weight of the minimal K-type of π and

µπ = λπ + ρ(Ψπ)− 2ρc;

• Note that t∗ = ⊕ni=1Cei, then the parameter λπ with respect to the basis
{ei}1≤i≤n is of the form

λπ = (λ1, · · · , λ1︸ ︷︷ ︸
p1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pk

, 0, · · · , 0︸ ︷︷ ︸
z

,−λk, · · · ,−λk︸ ︷︷ ︸
qk

, · · · ,−λ1, · · · ,−λ1︸ ︷︷ ︸
q1

),

with λi ∈ Z, λ1 > · · · > λk > 0, |pi − qi| ≤ 1;
• Ψπ ⊂ Φ is a root system containing all the positive compact roots, such that λπ

is dominant with respect to Ψπ, and for all simple roots α ∈ Ψπ we have that if
〈λπ, α〉 = 0, then α is non-compact.

• If z = 0 and pi + qi = 1 for all i, then the representation associated to (λd,Ψ) is
a discrete series.

3.1.2. Orthogonal case. — In the following, we recall the Harish-Chandra parametriza-
tion for representations of the orthogonal group of equal rank O(p, q), with p and
q two non-negative integers. We will parametrize the representations of O(p, q) via
the parameters of its maximal compact subgroup K = O(p)×O(q). The equal rank
condition implies that p and q are even if p+ q is even.

Set p0 = [p2 ] and q0 = [ q2 ]. We can parametrize an irreducible representation of
compact group O(p) by (λ0; ε), here λ0 = (a1, · · · , ap0) is the usual highest weight of
a finite dimensional representation of SO(p) and ε ∈ {±1}. If p is even and ap0 > 0,
(λ0; 1) and (λ0;−1) correspond to the same representation of O(p). If p is odd then
−Id acts by (−1)

∑p0
i=1 aiε. If p is even, the parameter of the trivial representation

of O(p) corresponds to (0, · · · , 0; 1), the sign representation of O(p) corresponds to
(0, · · · , 0;−1), and we have (a1, · · · , a[ p2 ]; ε)⊗ sgn = (a1, · · · , a[ p2 ];−ε). The represen-
tations of O(q) can be parametrized in the same way. Hence an irreducible finite
dimensional representation of K is parametrized by (a1, · · · , ap0 ; ε)⊗ (b1, · · · , bq0 ; ε

′
).

We will refer to (a1, · · · , ap0 ; b1, · · · , bq0) as the highest weight, and to (ε, ε′) as the
signs of the K-type.
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Let J = diag(1, · · · , 1,−1) ∈ O(p, q) \ SO(p, q) and let σ be the automorphism of
O(p, q) giving by the conjugation by J . Note that σ also acts on representations,
Cartan subgroups and Lie algebra of O(p, q). Let π be a limit of discrete of series
representation of O(p, q). Then the restriction of π to SO(p, q) is:

π|SO(p,q) =
{

π, if π|SO(p,q) is irreducible;

π0⊕σ(π0), otherwise.

Here π0 is an irreducible admissible representation of SO(p, q) with π0 and σ(π0)

are non-equivalent. In both cases, we choose the irreducible subrepresentation of
π|SO(p,q) with Harish-Chandra parameter (λπ,Ψπ) described as follows: let Φ,∆ be
the sets of roots and simple roots of O(p, q) respectively defined in §2.2.2. Note that
t∗ = ⊕p0i=1Cei

⊕
⊕q0j=1Cfj .

• The parameter λπ with respect to the basis {ei, fj}1≤i≤p0,1≤j≤q0 is of the form

λπ = (λ1, · · · , λ1︸ ︷︷ ︸
p1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pk

, 0, · · · , 0︸ ︷︷ ︸
z

, λ1, · · · , λ1︸ ︷︷ ︸
q1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qk

, 0, · · · , 0︸ ︷︷ ︸
z′

),

with
(a) λk ∈ Z, λ1 > · · · > λk > 0, |pi − qi| ≤ 1,
(b) |z − z′ | ≤ 1,
(c) p0 =

∑k
i=1 pi + z and q0 =

∑k
i=1 qi + z

′
;

• Ψπ ⊂ Φ is a root system containing all the positive compact roots, such that λπ
is dominant with respect to Ψπ.

To parametrize π, we need one more parameter ξ ∈ {±1} called the sign of π.

• If π|SO(p,q) is irreducible, then π|SO(p,q) has two liftings π and π⊗ det to O(p, q).
We choose the sign +1 for the representation π and −1 for π ⊗ det;
• If π|SO(p,q) is reducible, there is only one representation π of O(p, q) whose

restriction to SO(p, q) is π0 ⊕ σ(π0). In this case the sign is arbitrary, we choose
the sign +1.

The triple (λπ, ξ,Ψπ) is called the Harish-Chandra parameter of π.

3.2. Real reductive groups of equal rank. — We are interested in the real reduc-
tive groups of equal rank(5), since the real forms admit discrete series representations
if and only if it is of equal rank. Note that, if n is odd (resp. even), then the split
(resp. quasi-split) orthogonal groups of rank n are not of equal rank. Thus for the
even special orthogonal group, we will take the quasi-split (resp. split) orthogonal
groups of rank n when n is odd (resp. even).

Through the general study on the strong real forms, we fix an inner class δ ∈
Out(G)[2]. Consider the action of Aut(G) on the center Z := Z(G) of G, which
factors through the quotient Out(G). We denote by Zδ the subgroup of Z fixed by δ.

(5)The real form in the equal rank case is called pure inner form in the sense of Kaletha (cf. [16]).
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Recall that in §2.3, we denoted the unique inner class of quasi-split form (resp.
quasi-compact form) defined by δ, by [σqs(δ)] (resp. [σqc(δ)]), together with their
corresponding inner class of Cartan involution by [θqs(δ)] (resp. [θqc(δ)]). For a
fixed pinning SplG = {B,H, {Xα}}, we denoted the unique quasi-split form (resp.
quasi-compact form) defined by δ, by σqs(δ,SplG) (resp. σqc(δ,SplG)), together with
their corresponding Cartan involution by θqs(δ,SplG) (resp. θqc(δ,SplG)).

In this section, we start with two perspectives of definitions on strong involutions
and strong real forms, and explain how these two perspectives coincide. In particular,
in the equal rank case, this allows us to use the set {h ∈ H : h2 = z}/W , where H is
a Cartan subgroup of G with Weyl group W , to parametrize the equivalence classes
of strong real forms of G (Proposition 3.7).

3.2.1. Strong Involution. — Denote Γ = {1, θqc(δ,SplG)}. Define the extended group
for (G, δ) as the semi-direct product

GΓ = Go Γ.

Definition 3.3. — [3, Definition 2.13]

1. A strong involution of G in the inner class defined by δ is an element ξ ∈ GΓ \G
such that ξ2 ∈ Ztor. The set of such strong involutions is denoted by SIδ,SplG(G).
Moreover, to a strong involution ξ ∈ SIδ,SplG(G), we can associate a central
invariant

Inv(ξ) = ξ2 ∈ Zδtor.

2. Two strong involutions ξ, ξ
′
are said to be equivalent if there exists g ∈ G, such

that ξ = gξ
′
g−1. We denote by [SIδ,SplG(G)] the set of equivalence classes in

SIδ,SplG(G).

Since the choice of quasi-compact form in an inner class only depends on the choice of
the pinning of G, where two pinnings SplG and SplG

′
differ from an inner involution,

say, there exists h ∈ G, such that SplG = int(h) ◦ SplG
′
([3, Proposition 2.8]). Thus

[SIδ,SplG(G)] is independent of the choice of SplG.
We denote by [SIδ(G)] the set of equivalence classes of strong involutions defined

by δ. Note that two equivalent strong involutions ξ, ξ
′
have the same central invariant.

Hence the central invariant is well defined for [SIδ(G)].
For ξ ∈ [SIδ(G)], let θξ = int(ξ) be the corresponding Cartan involution in the

inner class defined by δ. In fact, ξ 7→ θξ induces a surjection:

[SIδ(G)] � {equivalence classes of cartan involutions in the inner class defined by δ}.

To any Cartan involution θ of G in the inner class defined by δ, one identifies [θ]

with a class in H1([θqc(δ)],Gad), by Remark 2.12, and defines a central invariant
Inv([θ]) ∈ Zδ/(1 + δ)Z of the equivalence class [σ], using the map

H1([θqc(δ)],Gad)→ H2([θqc(δ)],Z) ∼= Ĥ0(θ,Z) ∼= Zθ/(1 + θ)Z ∼= Zδ/(1 + δ)Z.
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The first map is from the connecting homomorphism of group cohomology for the
exact sequence:

1→ Z→ G→ Gad → 1.

The second and the third arrow are from properties of Tate cohomology, and the last
one is from [4, Lemma 8.6]. If two Cartan involutions θ1, θ2 of G live in the same
inner class and have the same central invariant, then H1(θ1,G) ∼= H1(θ2,G) (cf. [4,
Lemma 8.10]).

The following commutative diagram shows the compatibility of the two central
invariants:

[SIδ(G)] //

Inv

��

H1([θqc(δ)],Gad)

Inv

��
Zδtor

// Zδ/(1 + δ)Z

Proposition 3.4. — [2, Lemma 6.10] Suppose that θ is a Cartan involution of
G in the inner class defined by δ. Choose a representative z ∈ Zδtor of Inv([θ]) ∈
Zδ/(1 + δ)Z(6). Then there is a bijection:

H1(θ,G)↔ {equivalent classes of strong involutions with central invariant z}.

3.2.2. Strong Real Forms and their relations. —

Definition 3.5. — [4, Definition 8.11]
1. A strong real form in the inner class of σqs(δ,SplG) is an element of

SRFσqs(δ,SplG)(G) := Z1(σqs(δ,SplG),G;Ztor)/(1 + σqs(δ,SplG))Z,

where Z1(σqs(δ,SplG),G;Ztor) := {g ∈ G : gσqs(δ,SplG)(g) ∈ Ztor}. Moreover,
to a strong real form g ∈ SRFσqs(δ,SplG)(G), we can associate a central invariant

Inv(g) = gσqs(δ,SplG)(g) ∈ Zδtor.

2. Two strong real forms g, h are said to be equivalent if they map to a
same element of H1(σqs(δ,SplG),G;Ztor) := Z1(σqs(δ,SplG),G;Ztor)/[g ∼
tgσqs(δ,SplG)(t−1), t ∈ G].

Note that two equivalent strong real forms g, h have the same central invariant. Note
that for two pinnings SplG and SplG

′
with h ∈ G, such that SplG = int(h)◦SplG

′
,we

have a bijection:

SRFσqs(δ,SplG)(G) ∼= SRFσqs(δ,SplG
′
)(G), g 7→ ghσqs(δ,SplG

′
)(h)−1.

Thus we define the set [SRFδ(G)] of equivalence classes of strong real forms in the
inner class defined by δ, together with a central invariant map Inv : [SRFδ(G)]→ Zδtor.
By the previous discussion, [SRFδ(G)] is independent of the choice of SplG.

(6)For existence of such representative, see [3, Lemma 2.15].
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As the pinning varies, maps g ∈ SRFσqs(δ,SplG) 7→ int(g) ◦ σqs(δ,SplG) are compat-
ible and induce a surjection:

[SRFδ(G)] � {equivalence classes of real forms in the inner class defined by δ}.

To any real form σ ofG in the inner class defined by δ, one identifies [σ] with a class in
H1([σqs(δ)],Gad), by Remark 2.7, and defines a central invariant Inv([σ]) ∈ Zδ/(1+δ)Z

of the equivalence class [σ], using the map

H1([σqs(δ)],Gad)→ H2(σqs(δ),Z) ∼= Ĥ0(σ,Z) ∼= Zσ/(1 + σ)Z ∼= Zδ/(1 + δ)Z

which is similar to the Cartan involution case.
The following commutative diagram shows the compatibility of the two central

invariants:
[SRFδ(G)] //

Inv

��

H1([σqs(δ)],Gad)

Inv

��
Zδtor

// Zδ/(1 + δ)Z

Proposition 3.6. — [4, Proposition 8.14] Suppose that σ is a real form of G in the
inner class defined by δ. Choose a representative z ∈ Zδtor of Inv([σ]) ∈ Zδ/(1 + δ)Z.
Then there is a bijection:

H1(σ,G)↔ {equivalent classes of strong real forms with central invariant z}.

Recall that we have the canonical bijection of pointed sets H1(σ,Gad) ∼= H1(θ,Gad)

(see Remark 2.12), and two compatibilities of central invariant functions mentioned in
this section. We have the following commutative diagram by composing them:

[SRFδ(G)] H1([σ],Gad) H1([θ],Gad) [SIδ(G)]

Zδtor Zδ/(1 + δ)Z Zδ/(1 + δ)Z Zδtor

Inv

∼=

Inv Inv Inv

=

This shows the compatibility of the central invariants for strong involutions and strong
real forms (in Zδ/(1 + δ)Z).

Note that there is a natural bijection between [SRFδ(G)] and [SIδ(G)] ([4,
Remark 8.13]): fixing a pinning SplG, choose g0 ∈ SRFσqs(δ,SplG) such that
σqc(δ,SplG) = int(g0) ◦ σqs(δ,SplG). Then by twisting g0 (see [4, Lemma 2.4] and [4,
Corollary 4.7]), we have

[SRFδ(G)] ∼= H1([σqc],G;Ztor) ∼= H1([θqc],G;Ztor) ∼= [SIδ(G)].

We conclude that the definitions of strong involutions and strong real forms are
compatible, also their central invariants (in Zδ/(1 + δ)Z). From now on, we do not
differ [SIδ(G)] “the equivalence classes of strong involutions (in the inner class defined
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by δ)” and [SRFδ(G)] “the equivalence classes of strong real forms (in the inner class
defined by δ)”.

For the equal rank case δ = θqc = 1, we have an explicit description of equivalence
classes of strong real forms using central invariants:

Proposition 3.7. — [4, Proposition 8.16][2, Corollary 6.14] Suppose that σ is an
equal rank real form of G. Choose x ∈ G such that int(x) is a Cartan involution for
σ and z = x2 ∈ Z. Then we have an explicit bijection

H1(σ,G)↔ S(z),

where S(z) is the set of conjugacy classes of G with square equal to z. If H is a Cartan
subgroup of G with Weyl group W , then S(z) is equal to {h ∈ H : h2 = z}/W .

Example 3.8. — In [4, Table 1: Classical groups] and [4, Table 4: Adjoint classi-
cal groups], the cardinality of the cohomology group H1(σ,G) and H1(σ,Gad) (of
equal rank case) are calculated for the classical groups G respectively. In this example,
we will explain how this parametrization works for the symplectic group and orthogonal
group, following the calculation in [5, Example 5.11]. Recall that in the equal rank
case, we choose δ = θqc = 1.

To describe the set {h ∈ H : h2 ∈ Z}/W , we use the coweight lattice(7) for G:

P∨ = {λ∨ ∈ X∨(H)⊗Z C|〈α, λ∨〉 ∈ Z for all α ∈ Φ},

which can be described explicitly via the given based root datum. In fact, through
the canonical isomorphism h ∼=X∨(H) ⊗Z C, the coweight lattice P∨ for G can be
regarded as a subset of Lie algebra h:

P∨ = {λ∨ ∈ h| exp(2πiλ∨) ∈ Z}.

As a result, by [3, Lemma 22.3], the set {h ∈ H : h2 ∈ Z}/W can be identified with the
set (P∨/2X∨(H))/W , whose inverse is induced by the map λ∨ ∈ P∨ 7→ exp(πiλ∨) ∈
H.

Symplectic Case Cn: For G = Sp2n(C), since it is simply connected and semisimple,
we fix an isomorphism X∨(H) = Φ∨ ∼= Zn through the root system chosen in 2.2.1.
By Proposition 3.7, the equivalence classes of strong real forms are parametrized by

([Zn ∪ (Z +
1

2
)n]/2Zn)/W.

For representatives, we choose 1
2 (1, ..., 1) and (

p︷ ︸︸ ︷
1, ..., 1,

q︷ ︸︸ ︷
0, ..., 0), with 0 ≤ p ≤ n. The

representative 1
2 (1, ..., 1) corresponds to the split real symplectic group Sp2n(R) and the

cohomology set
∣∣H1(σSp2n(R),G)

∣∣ = 1. The central invariant of 1
2 (1, ..., 1) is −I. Repre-

sentatives (

p︷ ︸︸ ︷
1, ..., 1,

q︷ ︸︸ ︷
0, ..., 0), with 0 ≤ p ≤ n, correspond to the quaternionic symplectic

(7)This is actually a lattice only if G is semisimple.
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group(8) Sp(p, q), with p+ q = n, and the cohomology set
∣∣H1(σSp(p,q),G)

∣∣ = p+ q+1.

The central invariant of (

p︷ ︸︸ ︷
1, ..., 1,

q︷ ︸︸ ︷
0, ..., 0), with 0 ≤ p ≤ n, is I. All the equivalence

classes of strong real forms of Sp2n are listed above.
Even Orthogonal Case Dn: For G = SO(p, q) with both p and q even, by [4,

Example 8.20], the set S(1) = {h ∈ H : h2 = 1}/W is the same as the set

{diag(Ir,−Is)|r + s = p+ q; s even}.

Hence, the set H1(σG,G) has cardinality p
2 + q

2 + 1, and it parametrizes the even
special orthogonal group SO(r, s), with r+s = 2n and both r and s even. Such groups
have the central invariant I.

Remark 3.9. — The isometry group SO∗(2n) of a skew-Hermitian form on a
quaternionic vector space (counted twice) is the remaining equivalence class of strong
real forms of SO(2n,C). The central invariant of this group is −I. This corresponds
to H1(σSO∗(2n),SO(2n,C)) with cardinality 2.

Remark 3.10. — When p+ q = 2n with n ≥ 5, we have Out(SO(2n,C)) ∼= Z/2Z.
Thus there exists non-equal rank real form of SO(2n,C): for SO(p, q) with both p, q
odd, note that Rank(SO(p, q)) = p+q

2 > p−1
2 + q−1

2 = Rank(SO(p) × SO(q)). The
inner class of non-equal rank real form consists of SO(p, q) with both p, q odd. This
explains why only SO(p, q), with both p and q even, appeared in Example 3.8.

3.2.3. Representation of strong involutions. — In this subsection, let G be a quasi-
split real reductive group of equal rank, and let Gd be its complex dual group. We
denote by G the complexification of G and by σG the action of σ on G associated to
G. We also fix a Borel pair (B,T) of G. Let W = NormG(T)/T be the Weyl group
associated to (B,T). We denote by ρ (resp. ρ∨) the half sum of the positive roots
(resp. coroots) associated to (B,T).

For simplicity, we denote by S̃ as the set of strong involutions of G in the inner class
defined by δ = θqc = 1, and [S̃] as the set of equivalent classes of such strong involutions.
We have a stratification S̃ = ∪z∈ZS̃(z) with S̃(z) = {x̃ ∈ T : x̃2 = z}, called the set of
strong involutions of type z. By proposition 3.7, we identify [S̃](z) = S̃(z)/W with
the set of conjugacy classes of strong real forms with central invariant z. For a strong
involution x̃ ∈ S̃, set θx̃ = int(x̃) and Kx̃ = Gθx̃ = CentG(x̃).

Definition 3.11. — (1) A representation of a strong involution x̃ ∈ S̃ is a pair
(x̃, π) where π is a (g,Kx̃)-module.

(2) Two representations (x̃, π) and (x̃
′
, π
′
) of strong involutions are equivalent if

there exists g ∈ G such that gx̃g−1 = x̃
′
and π

′ ∼= πg.

(8)the isometry group of a Hermitian form on a quaternionic vector space.
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(3) A representation of a strong real form associated to x ∈ [S̃](z) is an equivalence
class [x̃, π] of a representation (x̃, π) of a strong involution x̃ ∈ S̃(z) lifting x.

For any strong real form x ∈ [S̃](z) with lifting x̃ ∈ S̃(z), two representations [x̃, π]

and [x̃, π
′
] of a strong real form x are the same (i.e. [x̃, π] = [x̃, π

′
]) if and only if

there exists g ∈ G such that gx̃g−1 = x̃ and πg ∼= π
′
. This holds if and only if g ∈ Kx̃.

Moreover, for any regular λ ∈ t∗, denote by πx̃(λ) the unique (g,Kx̃)-module (up to
isomorphism) with parameter λ. Then for the representation [x̃, πx̃(λ)] of strong real
form x and for w ∈W , we have

(3.1) [x̃, πx̃(λ)] = w[x̃, πx̃(λ)] = [wx̃, πwx̃(wλ)].

3.2.4. L-packet associated to discrete Langlands parameter and strong involution. —

Definition 3.12. — If a L-parameter ϕ of G has a finite centralizer, then ϕ is called
a discrete series L-parameter.

Fix a discrete series L-parameter ϕ of G. Recall thatWR ∼= C×∪jC×. As explained
in [6, Proposition 2.10], we can associate ϕ with a regular character λ ∈ t∗. More
precisely, after conjugating by Gd we may assume ϕ(C×) ⊂ T∨. The discrete property
implies that

(1) ϕ(j)hϕ(j)−1 = h−1, for h ∈ T∨,
(2) for z ∈ C×, we have ϕ(z) = (z/z̄)λ, with λ ∈ X(T)⊗Z C regular.

By the canonical isomorphism X(T) ⊗Z C ∼= t∗, this regular λ ∈ X(T) ⊗ C can
associate to a character of the Lie algebra t, still denoted by λ. By [5, §7], we may
assume λ is dominant with respect to the root system associated with (B,T). Let
µ be the infinitesimal character associated to λ, which is independant of choices of
conjugations by Gd.

Let x̃ ∈ S̃(z) be a strong involution with z ∈ Z. We denote by Π(x̃, ϕ) the L-
packet associated with ϕ and the strong involution x̃ (i.e. the L-packet of ϕ and
the real form Gx̃ of G determined by x̃). By the equivalence between the category
of smooth Fréchet representations of moderate growth of Gx̃ and the category of
admissible finitely generated (g,Kx̃)-modules, Π(x̃, ϕ) can be identified with the set of
discret series (g,Kx̃)-modules with infinitesmal character µ. Note that for any regular
character λ ∈ t∗, πx̃(ωλ) = πx̃(λ) if and only if w ∈ Kx̃. The L-packet Π(x̃, ϕ) can be
parametrized as follows

Π(x̃, ϕ) = {πx̃(ω−1λ) : ω ∈W/W (T,Kx̃)},

where W (T,Kx̃) is the Weyl group of T in Kx̃.
Vogan defined Π(ϕ) to be the set of all the representations of strong real forms

with infinitesimal character µ. Since [S̃](z) = S̃(z)/W can be identified with the set of
conjugacy classes of strong real forms with central invarint z, the set of representations
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of a strong real form with central invariant z is stable under the action of W . The
L-packet Π(x̃, ϕ) can be embedded into Π(ϕ) as

Π(x̃, ϕ) = {[x̃, πx̃(w−1λ)] : w ∈W/W (T,Kx̃)},

which induces a W -equivariant bijection Π(x̃, ϕ)↔ {wx̃|w ∈W/W (T,Kx̃)} using the
equality (3.1). To make the bijection more explicit, choose a set S0 of representatives
of [S̃]. Thus, we have a W -equivariant bijection

Π(ϕ) =
∐
x̃∈S0

Π(x̃, ϕ)↔
∐
x̃∈S0

{wx̃|w ∈W/W (T,Kx̃)} ∼= S̃

Thus we obtain a W -equivariant bijection.

(3.2) S̃ ↔ Π(ϕ), x̃ 7→ [x̃, πx̃(λ)].

We regroup Vogan’s L-packet of ϕ for inner forms using the central invariant: for
z ∈ Z, we set

Πz(ϕ) := ∪x̃∈S̃(z)Π(x̃, ϕ).

Proposition 3.13. — [1, Prop. 5.3] For any z ∈ Z and any discrete series Langlands
parameter ϕ of G, we have a W -equivariant bijection between S̃(z) and Πz(ϕ), given
by x̃ 7→ [x̃, πx̃(λ)], where λ ∈ t∗ is the regular character determined by ϕ.

Let x̃ ∈ S̃ and θx̃ be the Cartan involution associated to x̃. By [25, Theorem 6.2(f)],
a discrete series representation π(λ) is generic if and only if every simple root of g in
the chamber defined by λ is non-compact. Recall that a root α is compact with respect
to the Cartan involution θx̃ if α(x̃) = 1, and is non-compact if α(x̃) = −1. Thus,
the element x̃ ∈ S̃ corresponds to a generic discrete series representation through the
bijection (3.2) if and only if α(x̃) = −1 for all simple roots α.

3.3. Langlands-Vogan parameters. — In this section, we will give the explicit
description of the component group of a discrete series L-parameter for symplectic
groups and orthogonal groups starting from a given based root datum, and explain
how to associate a Langlands-Vogan parameter with a Harish-Chandra parameter.

Fix a fundamental Borel pair (B∗,T∗) of Whittaker type of G. Let Db =

(X,Φ,∆, X∨,Φ∨,∆∨) be the based root datum associated to (B∗,T∗). We denote by
Ψ∗ the set of positive roots generated by ∆. Set ρ = 1

2

∑
α∈Ψ∗

α and ρ∨ = 1
2

∑
α∨∈Ψ∨∗

α∨.

The half sum ρ of the positive roots produces a basepoint xb ∈ S̃ of the strong
involutions of G:

xb = exp(iπρ∨) ∈ S̃ = ∪z∈ZS̃(z) ⊂ T∗.

Note for any simple root α ∈ ∆, we have 〈α, ρ∨〉 = 1. We can deduce that α(xb) =

exp(iπ〈α, ρ∨〉) = −1, for any simple root α ∈ ∆. Thus, the element xb ∈ S̃ corresponds
to a generic discrete series representation through the bijection (3.2) for any discrete
series L-parameter ϕ of G.
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Example 3.14. — We use the fixed root systems Ψb,Sp in section 2.2.1 and Ψb,O in
section 2.2.2 to compute the basepoints for G following the above discussion.

1. Suppose Gd = O(2n+ 1,C) with n odd. Let T be the maximal torus of Gd with
Lie algebra

t = {diag(g(t1), · · · , g(tn), 0) : ti ∈ C}
with g(t) = ( 0 t

−t 0 ) for all t ∈ C. Let

ei : (diag(g(t1), · · · , g(tn), 0)) 7→ 2iti.

Then t∗ = ⊕ni=1Cei. There is a positive root system

Ψ∨ = 〈e1 + en,−en − e2, e2 + en−1, · · · ,−en+3
2
− en+1

2
, en+1

2
〉.

The half sum of these positive roots is

ρ∨ =
1

2
((2n− 1)e1 + (2n− 5)e2 + · · ·+ 3en+1

2
− en+3

2
− · · · − (2n− 3)en).

Thus, the basepoint of strong involutions for G is

xb,Sp = (i sin(
2n− 1

2
π), · · · , i sin(

2n− 3

2
π)) = i(1, · · · , 1,−1, · · · ,−1)

and z(ρ∨) = x2
b,Sp = −I.

For Gd = O(2n+1,C) with n even, the same computation shows the basepoint
for G is

xb,Sp = i(−1, · · · ,−1, 1, · · · , 1).

2. Suppose Gd = O(2n,C) with n even. Then as in section 2.2.2,

Ψ∨ = 〈ei − fi, fi − ei+1, en2 ± fn2 〉1≤i≤n2−1

is a positive root system. The half sum of these positive roots is

ρ∨ =
1

2
(2(n− 1)e1 + 2(n− 3)e2 + · · ·+ 2en

2
+ 2(n− 2)f1 + · · ·+ 4fn

2−1).

Thus, the basepoint of strong involutions for G is

xb,O = (cos((n− 1)π), · · · , cos(0)) = ((−1)n−1, · · · , (−1)n−1, (−1)n, · · · , (−1)n)

and z(ρ∨) = x2
b,O = I.

Let ϕ be an L-parameter associated to a limit of discrete series representation of
an equal rank real form G of G. We describe the component group Aϕ = π0(Cϕ) for
G = Sp2n(R) and G = O(p, q) with p, q even in the following example.

Example 3.15. — Let 1 be the trivial character of WR.
(1) Let G = Sp2n(R). Let us write the limit of discrete series L-parameter ϕ of G

as

(3.3) ϕ =

k⊕
i=1

ciρλi
⊕

(2z + 1)1,
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where z is a positive integer and ρλ1
, · · · , ρλk are self-dual irreducible representations

of WR of dimension 2 with λi even natural number and ci > 0 an integer.
The component group Aϕ of ϕ is

Aϕ =

{
⊕ki=1(Z/2Z)ai, if z = 0,

⊕ki=1(Z/2Z)ai ⊕ (Z/2Z)b, if z > 0,

where ai is a symbol corresponding to ρλi and b is a symbol corresponding to 1.
(2) Let G = O(p, q) with p, q even. Let ϕ be a limit of discrete series L-parameter

with decomposition

(3.4) ϕ =

k⊕
i=1

ciρλi
⊕

2z1,

where z is a positive integer and ρλ1 , · · · , ρλk are self-dual irreducible representations
of WR of dimension 2 with λi even natural number and ci ∈ N>0.

The component group Aϕ of ϕ is

Aϕ =

{
⊕ki=1(Z/2Z)ai, if z = 0,

⊕ki=1(Z/2Z)ai ⊕ (Z/2Z)b, if z > 0,

where ai is a symbol corresponding to ρλi and b is a symbol corresponding to 1.

Definition 3.16. — A Langlands-Vogan parameter of G is a pair (ϕ, η), where ϕ is
a L-parameter of G and η is a character of the component group Aϕ.

If ϕ is a discrete series L-parameter of G, we have

Aϕ ∼= {h ∈ T∨∗ : h2 = 1} = T∨∗ [2]

and the pair (ϕ, η) is called a discrete series Langlands-Vogan parameter. Using the
perfect pairing between T∨∗ and X(T∨∗ ), we identify T∨∗ [2] with

Hom(X(T∨∗ )/2X(T∨∗ ),C×) = Hom(X∨(T∗)/2X
∨(T∗),C×).

This induces an isomorphism

s : X∨(T∗)/2X
∨(T∗) ∼= Âϕ.

On the other hand, for any x ∈ S̃(z(ρ∨)), there exists a γ∨ ∈ X∨(T∗) such that(9)

x = exp(πiγ∨). Note that we have an isomorphism S̃(z(ρ∨)) ∼= T∗[2], x 7→ xx−1
b ,

where xb is the basepoint of the strong involutions of G. Then there is an isomorphism

S̃(z(ρ∨))
∼−→ T∗[2]

∼−→ Âϕ, x 7→ xx−1
b 7→ s(〈−, xx−1

b 〉),

where 〈, 〉 is the perfect pairing between T∨∗ [2] and T∗[2]. In particular, the identity of
Âϕ is the image of the basepoint xb ∈ S̃(z(ρ∨)) ⊂ T∗ of the strong involutions of G.

(9)We use our fixed isomorphism t∗ ∼= X∨(T∗).



PARAMETERS AND THETA LIFTS 25

For any η ∈ Âϕ, we can associate a unique xη ∈ S̃(z(ρ∨)). Thus there is a unique
element wη ∈ W such that wη · xb = xη. This implies the element η corresponds to
a representation [xη, πxη(λ)] of strong real form defined by xη. Note that, wη = 1

corresponds to the generic representation [xb, πxb(λ)] with respect to the fundamental
Borel pair of Whittaker type (B∗,T∗). Thus, for a discrete series Langlands-Vogan
parameter (ϕ, η), we get a Harish-Chandra parameter (λη,Ψη, µη), where Ψη = wηΨ∗.

Example 3.17. — In this example, we choose the basepoint xb,Sp and xb,O described
in Example 3.14.

(1) Suppose G = Sp2n(R).
(2) If n is even, then the positive root system Ψb,Sp is generated by the

simple roots {e1 +en,−en−e2, · · · , en2 +en+2
2
,−2en+2

2
}. By the dominant

condition, the corresponding lifting of λ0 is

λd,Sp = (λ1, λ3, · · · , λn−1,−λn, · · · ,−λ2).

(a) If n is odd, then the corresponding positive root system Ψb,Sp is generated
by the simple roots {e1 + en,−en− e2, · · · ,−en+1

2
− en+3

2
, 2en+1

2
}. By the

dominant condition, the corresponding lifting of λ0 is

λd,Sp = (λ1, λ3, · · · , λn,−λn−1, · · · ,−λ2).

In both cases, the unique generic representation in the L-packet corresponding
to the basepoint is determined by the Harish-Chandra parameter (λd,Sp,Ψb,Sp).

(2) Suppose G is the even orthogonal group of rank n associated to the basepoint
xb,O. Thus G has signature (n, n) (resp. (n+ 1, n− 1)) if n is even (resp. odd).
Let λ0 be an infinitesimal character of G as above.

(a) If n is even, then the corresponding positive root system Ψb,O is generated
by the simple roots {e1 − f1, f1 − e2, · · · , en2 − fn

2
, en

2
+ fn

2
}. By the

dominant condition, the corresponding lifting of λ0 is

λd,O = (λ1, λ3, · · · , λn−1;λ2, · · · , λn).

(b) If n is odd, then the corresponding positive root system Ψb,O is generated
by the simple roots {e1 − f1, f1 − e2, · · · , fn−1

2
− en+1

2
, en+1

2
+ fn−1

2
}. By

the dominant condition, the corresponding lifting of λ0 is

λd,O = (λ1, λ3, · · · , λn;λ2, · · · , λn−1).

In both cases, the generic discrete series representation corresponding to the
basepoint xb,O is determined by the Harish-Chandra parameter (λd,O,Ψb,O).

LetG be an equal rank real form ofG. In the following examples, we describe η ∈ Âϕ
in terms of element of the Weyl group W/W (T∗,K), where K is the complexification
of the maximal compact subgroup of G.
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Example 3.18. — (1) Let (ϕ, η) be a discrete series Langlands-Vogan parameter
of G = Sp2n(R). Let xη ∈ S̃(z(ρ∨)) be the strong involution corresponding to
η ∈ Âϕ. We follow the notations in §2.2.1. For any root αi ∈ ∆(g, t), let sαi be
the reflection associated to αi. In particular, we have

sei+ej : diag(· · · , ti︸︷︷︸
i-th

, · · · , −tj︸︷︷︸
(2n−j+1)-th

, · · · ) 7→ diag(· · · , −tj︸︷︷︸
i-th

, · · · , ti︸︷︷︸
(2n−j+1)-th

, · · · ).

The Weyl group W of G = G⊗ C is generated by the set

{se1−e2 , se2−e3 , · · · , sen−1−en , s2en}

of reflections.

Let Ai,j =

 Ii−1

0 −1
I2n−j+1

1 0
Ij−1

 ∈ NormGC(T∗) for 1 ≤ i, j ≤ n. Then

Ai,j acts on T∗ via

Ai,j : diag(· · · , ri︸︷︷︸
i-th

, · · · , r−1
j︸︷︷︸

(2n−j+1)-th

, · · · ) 7→ diag(· · · , r−1
j︸︷︷︸
i-th

, · · · , ri︸︷︷︸
(2n−j+1)-th

, · · · ).

Then the map sending sei+ej toAi,j gives an explicit isomorphism NormG(T∗)/T∗ ∼=
W . There exists an element A ∈ NormG(T∗)/T∗ such that xη = A · xb,Sp; thus
such an A gives an element wη ∈ W via the above isomorphism and we get a
Harish-Chandra parameter (λη,Ψη, µη), where λη = wη · λd,Sp and Ψη = wηΨ∗.

(2) Let (ϕ, η) be a discrete series Langlands-Vogan parameter of G = O(p, q) with
p ≥ q even. Let xη ∈ S̃(z(ρ∨)) be the strong involution corresponding to η. We
use the notation in §2.2.2. For α ∈ ∆(g, t), let sα be the reflection associated to
the root α. Then the Weyl group W of G is generated by the set

{sei−ei+1
, sfi−fj+1

}1≤i< p
2 ,1≤j<

q
2
∪{sei−fi , sfj−ej+1

, sfq0−eq0+1
, · · · , sfq0−ep0}1≤i≤ p2 ,1≤j< q

2
.

Moreover, the quotient group W/W (T∗,K) is generated by the image of the set
of reflections {sei−fi , sfj−ej+1

, sfq0−eq0+1
, · · · , sfq0−ep0}1≤i≤ p2 ,1≤j< q

2
.

The group theorectical description of the Weyl group W is given by W ∼=
NormGC(T∗)/T∗, where NormGC(T∗) is the normalizer of T∗ in GC. In par-
ticular, the following elements S±i,±j with 1 ≤ i ≤ p0 and 1 ≤ j ≤ q0 are in
NormGC(T∗). Let J2 =

(
1 0
0 −1

)
∈ GL2(C). We set

Si,j =


I2(i−1)

0 I2
I2(p0−i+1)

I2(j−1)

I2 0
I2(q0−j+1)

 ,

S−i,j =


I2(i−1)

0 J2
I2(p0−i+1)

I2(j−1)

I2 0
I2(q0−j+1)

 ,
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Si,−j =


I2(i−1)

0 I2
I2(p0−i+1)

I2(j−1)

J2 0
I2(q0−j+1)

 ,

S−i,−j =


I2(i−1)

0 J2
I2(p0−i+1)

I2(j−1)

J2 0
I2(q0−j+1)

 .

One can verify that the conjuate action of Si,j (resp. S−i,j , Si,−j and S−i,−j)
on T∗ coincides with the action of s−ei−fj (resp. sei−fj ,s−ei+fj and sei+fj ).
Then this gives an explicit isomorphism NormG(T∗)/T∗ ∼= W . The similar
argument as in the symplectic case gives an element wη ∈ W and a Harish-
Chandra parameter (λη,Ψη, µη), where λη = wη · λd,O and Ψη = wηΨ∗.

If ϕ is a limit of discrete series L-parameter. Following [19, Remarque 5.4], we can
modify the above discussion to relate the Langlands-Vogan parameter (ϕ, η) to its
Harish-Chandra parameter. In fact, since our classical groups are of equal rank, we
can realize the component group Aϕ as a quotient group of the component group of
Aϕreg with ϕreg a discrete series L-parameter. Thus, η can be viewed as an element of
Âϕreg by composing with the quotient map Aϕreg → Aϕ. More precisely, if

ϕ =

k⊕
i=1

ciρλi
⊕

(2z + 1)1,

where z ∈ N, λi ∈ 2N and λ1 > · · · > λk > 0, then the component group Aϕ is a
quotient of

Aϕreg = ⊕ri=1(Z/2Z)ai
⊕
⊕zj=1(Z/2Z)bj .

where r = c1 + · · ·+ ck. Then, the character η ∈ Âϕ can be identified as an element
ηd = (η1, · · · , ηr+z) ∈ Âϕreg with

η1 = · · · = ηc1 , ηc1+1 = · · · = ηc1+c2 , · · · , η∑k−1
i=1 ci+1 = · · · = ηr, ηr+1 = · · · = ηr+z.

in Âϕreg .

4. Parameters of theta lift for symplectic-orthogonal dual pairs

In this section, we give a description of the explicit theta correspondence of equal
rank groups via Langlands-Vogan parameters by combining the explicit theta corre-
spondence of equal rank groups via Harish-Chandra parameters given by Moeglin (cf.
[18, §4]) and Paul (cf. [21, Theorem 15]), and the explicit correspondence between
the Langlands-Vogan parameters and the Harish-Chandra parameters.

Throughout this section, let V be a 2n-dimensional symplectic space over R and
V
′
be a (2n + 2)-dimensional orthogonal space over R with signature (p, q). Then
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Sp(V ) = Sp2n(R) and O(V
′
) = O(p, q). For dual pair (Sp2n(R),O(p, q)), we will

replace the notation θV,V ′ by θp,q.

4.1. Theta liftings and Harish-Chandra parameters. —

Theorem 4.1. — [18, §4][21, Theorem 15](10) Let π be a limit of discrete series
representation of Sp2n(R) and (λπ,Ψπ, µπ) be the Harish-Chandra parameter of π,
where

λπ = (λ1, · · · , λ1︸ ︷︷ ︸
p1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pk

, 0, · · · , 0︸ ︷︷ ︸
z

,−λk, · · · ,−λk︸ ︷︷ ︸
qk

, · · · ,−λ1, · · · ,−λ1︸ ︷︷ ︸
q1

).

Let w = [ z2 ], p0 =
∑k
i=1 pi + w and q0 =

∑k
i=1 qi + w. There is a unique pair of

integers (p, q) with p + q = 2n + 2 such that θp,q(π) is a non-zero limit of discrete
series representation of O(p, q).

1. z = 2w: θ2p0,2q0(π) 6= 0 with the Harish-Chandra parameter (λ0,0, 1,Ψ0,0), where

λ0,0 = (λ1, · · · , λ1︸ ︷︷ ︸
p1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pk

, 0, · · · , 0︸ ︷︷ ︸
w

,

λ1, · · · , λ1︸ ︷︷ ︸
q1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qk

, 0, · · · , 0︸ ︷︷ ︸
w

),
(4.1)

and Ψ0,0 is obtained from Ψπ as follows: for 1 ≤ i ≤ p0 and 1 ≤ j ≤ q0, the root
ei− fj ∈ Ψ0,0 if and only if ei + en−j+1 ∈ Ψ. (This determines Ψ0,0 completely.)

2. z = 2w > 0:
– If ek+1 + ek+z ∈ Ψπ, θ2p0+2,2q0(π) 6= 0 with the parameter (λ2,0, 1,Ψ2,0),
where λ2,0 is obtained from λ0,0 by adding a zero on the left and Ψ0,0 ⊂
Ψ2,0.

– If −ek+1− ek+z ∈ Ψπ, θ2p0,2q0+2(π) 6= 0 with the parameter (λ0,2, 1,Ψ0,2),
where λ0,2 is obtained from λ0,0 by adding a zero on the right and Ψ0,0 ⊂
Ψ0,2.

3. z = w = 0: θ2p0+2,2q0(π) 6= 0 with parameter (λ2,0, 1,Ψ2,0) and θ2p0,2q0+2(π) 6= 0

with parameter (λ0,2, 1,Ψ0,2), where λ2,0 and λ0,2 are obtained from λ0,0 by
adding a zero on the left and right respectively, and Ψ0,0 ⊂ Ψ2,0,Ψ0,2.

4. z = 2w + 1:
– If ek+1 + ek+z ∈ Ψπ, then θ2p0+2,2q0+2(π) 6= 0 with the parameter

(λ1,1, 1,Ψ1,1), where λ1,1 is obtained from λ0,0 by adding a zero on each
side of the semicolon, and Ψ0,0 ∪ {ep0+1 − fq0+1} ⊂ Ψ1,1. Moreover,

(10)In theorem 4.1, the situation is determined by the condition ep0+1 + ep0+z or −(ep0+1 + ep0+z)

occurs in Ψ. The difference between the statement in [21, Theorem 15] and our statement is due to the
different choices of based root datum. In fact, Paul used the standard simple roots {ei−ei+1, 2en, i =

1, · · · , n−1}, and we use the non-compact simple roots {ei+en+1−i,−en+1−i−ei+1 : 1 ≤ i ≤ n−1}.
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θ2p0+2,2q0(π) 6= 0 with parameter (λ1,0, 1,Ψ1,0), where λ1,0 is obtained
from λ0,0 by adding a zero on the left, and Ψ0,0 ⊂ Ψ1,0.

– If −ek+1 − ek+z ∈ Ψπ, then θ2p0+2,2q0+2(π) 6= 0 with the parameter
(λ1,1, 1,Ψ1,1), where λ1,1 is obtained from λ0,0 by adding a zero on each side
of the semicolon, and Ψ0,0 ∪ {−ep0+1 + fq0+1} ⊂ Ψ1,1. θ2p0+2,2q0(π) 6= 0

with parameter (λ0,1, 1,Ψ0,1), where λ0,1 is obtained from λ0,0 by adding
a zero on the right, and Ψ0,0 ⊂ Ψ0,1.

Remark 4.2. — In the Paul’s theorem [21, Theorem 15], there are exactly four pairs
of integers (p, q) with p+ q = 2n or 2n+ 2 such that θp,q(π) 6= 0. But there is only
one pair of integers (p, q) with p+ q = 2n+ 2 such that θp,q(π) is a non-zero limit of
discrete series representation of O(p, q).

4.2. Translation. — Let ϕ : WR → O(M) be a L-parameter of Sp(V ), whereM is a
(2n+ 1)-dimensional orthogonal space. Let µ be the infinitesimal character associated
to ϕ and Π(ϕ) the L-packet associated to ϕ. Let π ∈ Π(ϕ) be a limit of discrete series
representation of Sp(V ) with Langlands-Vogan parameter (ϕ, η). Suppose ϕ admits a
decomposition as in Example 3.15 (1). Let λd,Sp be the Harish-Chandra parameter of
generic discrete series representation of Sp2n(R) as in Example 3.17.

Proposition 4.3. — Let π be a generic discrete series representation of Sp(V )

corresponding to the basepoint xb,Sp. Then θV,V ′ (π) is a generic discrete series rep-

resentation of O(V
′
) with signature (p, q) =

{
(n+ 2, n), if n is even

(n+ 1, n+ 1), if n is odd
, which

corresponds to the basepoint xb,O.

Proof. — This proposition follows from our description of the Harish-Chandra pa-
rameters of the basepoints xb,Sp and xb,O in Example 3.17, and the explicit theta
correspondence in Theorem 4.1. In the following, we provide the explicit computation
according to the parity of n.

(1) Assume n is even. The Harish-Chandra parameter λd,Sp of π has the form

(λ1, λ3, · · · , λn−1,−λn, · · · ,−λ2),

and the corresponding root system is generated by the simple roots

{e1 + en,−en − e2, · · · , en2 + en
2 +1,−2en

2 +1}.

Hence by case 3 of theorem 4.1, the Harish-Chandra parameter of θV,V ′ (π) is the
pair (λ2,0, 1,Ψ2,0), where

λ2,0 = (λ1, λ3, · · · , λn−1, 0;λ2, · · · , λn)

and the corresponding root system

Ψ2,0 = 〈e1 − f1, f1 − e2, · · · , en2−1 − fn2 , fn2 − en2 , fn2 + en
2
〉.
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Since λ1 > · · · > λn > 0 and the root system is generated by the non-compact
simple roots, the parameter (λ2,0, 1,Ψ2,0) is exactly the Harish-Chandra parameter
of the generic discrete series representation of O(n+ 2, n) as in Example 3.17. As
a result, θV,V ′ (π) is a generic discrete series of O(n+ 2, n).

(2) Assume n is odd. The Harish-Chandra parameter λd,Sp of π has the form

(λ1, λ3, · · · , λn,−λn−1, · · · ,−λ2),

and the corresponding root system is generated by the simple roots

ΨSp = 〈e1 + en,−en − e2, · · · ,−en+1
2
− en+3

2
, 2en+1

2
〉.

Hence by case 3 of Theorem 4.1, the Harish-Chandra parameter of θV,V ′ (π) is
(λ0,2, 1,Ψ0,2) where

λ0,2 = (λ1, λ3, · · · , λn;λ2, · · · , λn−1, 0).

and the corresponding root system

Ψ0,2 = 〈e1 − f1, f1 − e2, · · · , fn−1
2
− en−1

2
, en−1

2
− fn+1

2
, fn+1

2
− en+1

2
, fn+1

2
+ en+1

2
〉.

Similarly, the parameter (λ0,2,Ψ0,2) is exactly the Harish-Chandra parameter of
the generic discrete series representation of O(n+ 1, n+ 1) as in Example 3.17.
Hence θV,V ′ (π) is a generic discrete series of O(n+ 1, n+ 1).

Now, suppose π is a limit of discrete series representation of Sp(V ). Then the
Langlands-Vogan parameter (ϕ, η) of π determines a Harish-Chandra parameter λη is
of the form

(λ1, · · · , λ1︸ ︷︷ ︸
pη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pη,k

, 0, · · · , 0︸ ︷︷ ︸
z

,−λk, · · · ,−λk︸ ︷︷ ︸
qη,k

, · · · ,−λ1, · · · ,−λ1︸ ︷︷ ︸
qη,1

),

and a positive root system Ψη.

Let pη,0 =
k∑
l=1

pη,l and qη,0 =
k∑
l=1

qη,l, and w = [ z2 ]. We set pη = pη,0 + w and

qη = qη,0 + w. Note that

pη + qη =

{
n, if z ≡ 0 mod 2;

n− 1, if z ≡ 1 mod 2.

By Thereom 4.1, we set

λη,0,0 = (λ1, · · · , λ1︸ ︷︷ ︸
pη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pη,k

, 0, · · · , 0︸ ︷︷ ︸
w

;λ1, · · · , λ1︸ ︷︷ ︸
qη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qη,k

, 0, · · · , 0︸ ︷︷ ︸
w

),

and a root system Ψη,0,0 obtained from Ψη as follows: for 1 ≤ i ≤ pη and 1 ≤ j ≤ qη,
the root ei − fj ∈ Ψη,0,0 if and only if ei + en−j+1 ∈ Ψη. According to the values of z
and w, we have:
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(1) If z = w = 0 (i.e. case 3 of Theorem 4.1), then we have p = 2pη + 2 and q = 2qη.
The corresponding Harish-Chandra parameter is (λη,2,0, 1,Ψη,2,0), where λη,2,0
is obtained from λη,0,0 by adding a zero on the left and Ψη,0,0 ⊂ Ψη,2,0.

(2) If z = 2w > 0 (i.e. case 2 of Theorem 4.1), there are two possible cases:
(a) If epη,0+1 + epη,0+z ∈ Ψη, then we have p = 2pη + 2 and q = 2qη. The

corresponding Harish-Chandra parameter is (λη,2,0, 1,Ψη,2,0), where λη,2,0
is obtained from λη,0,0 by adding a zero on the left side, and Ψη,2,0 contains
Ψη,0,0.

(b) If −epη,0+1 − epη,0+z ∈ Ψη, then we have p = 2pη and q = 2qη + 2. The
corresponding Harish-Chandra parameter is (λη,0,2, 1,Ψη,0,2), where λη,0,2
is obtained from λη,0,2 by adding a zero on the right side, and Ψη,0,2

contains Ψη,0,0.
(3) If z = 2w + 1 (i.e. case 4 of Theorem 4.1), then we have p = 2pη + 2 and

q = 2qη + 2. The corresponding Harish-Chandra parameter is (λη,1,1, 1,Ψη,1,1),
where λη,1,1 is obtained from λη,0,0 by adding a zero on each side of the semicolon.
Moreover,

(a) if epη,0+1 + epη,0+z ∈ Ψη, then epη,0+w+1 − fqη,0+w+1 ∈ Ψη,1,1.
(b) If −epη,0+1 − epη,0+z ∈ Ψη, then −epη,0+w+1 + fqη,0+w+1 ∈ Ψη,1,1.

At last, we need to translate this Harish-Chandra parameter (λη,a,b, 1,Ψη,a,b) of
θV,V ′ (π) into the Langlands-Vogan parameter of θV,V ′ (π), where (a, b) = (2, 0), (0, 2)

or (1, 1), which depends on the Langlands-Vogan parameters (λη,Ψη) of π.

(1) If (a, b) = (2, 0), then the corresponding Harish-Chandra parameter is

λη,2,0 = (λ1, · · · , λ1︸ ︷︷ ︸
pη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pη,k

, 0, · · · , 0︸ ︷︷ ︸
w+1

;λ1, · · · , λ1︸ ︷︷ ︸
qη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qη,k

, 0, · · · , 0︸ ︷︷ ︸
w

)

and a root system Ψη,2,0 ⊃ Ψη,2,0.
(2) If (a, b) = (0, 2), then the corresponding Harish-Chandra parameter is

λη,2,0 = (λ1, · · · , λ1︸ ︷︷ ︸
pη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pη,k

, 0, · · · , 0︸ ︷︷ ︸
w

;λ1, · · · , λ1︸ ︷︷ ︸
qη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qη,k

, 0, · · · , 0︸ ︷︷ ︸
w+1

)

and a root system Ψη,0,2 ⊃ Ψη,0,0.
(3) If (a, b) = (1, 1), then the corresponding Harish-Chandra parameter is

λη,2,0 = (λ1, · · · , λ1︸ ︷︷ ︸
pη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
pη,k

, 0, · · · , 0︸ ︷︷ ︸
w+1

;λ1, · · · , λ1︸ ︷︷ ︸
qη,1

, · · · , λk, · · · , λk︸ ︷︷ ︸
qη,k

, 0, · · · , 0︸ ︷︷ ︸
w+1

)

and a root system Ψη,1,1 ⊃ Ψη,0,0.

Hence the corresponding Langlands-Vogan parameter of θV,V ′ (π) is the pair
(θV,V ′ (ϕ), θV,V ′ (η)) given by

θV,V ′ (ϕ) = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2w + 2)1
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and
θV,V ′ (η)|Aϕ = η.

Conversely, we start with a limit of discrete series representation σ of SO(p, q) with
p+ q = 2n+ 2. Moreover, we assume the theta lift of σ (as an O(p, q) representation)
is non-zero.

Let (ϕ
′
, η
′
) be the Langlands-Vogan parameter of σ. By [21, Corollary 24], the

Harish-Chandra lifting of σ has the form

λ
′

η′
= (λ

′

1, · · · , λ
′

1︸ ︷︷ ︸
p
η
′
,1

, · · · , λ
′

k, · · · , λ
′

k︸ ︷︷ ︸
p
η
′
,k

, 0, · · · , 0︸ ︷︷ ︸
z+1

;λ
′

1, · · · , λ
′

1︸ ︷︷ ︸
q
η
′
,1

, · · · , λ
′

k, · · · , λ
′

k︸ ︷︷ ︸
q
η
′
,k

, 0, · · · , 0︸ ︷︷ ︸
z′

),

where λ
′

1 > · · · > λ
′

k > 0, 2(pη′ ,1+· · ·+pη′ ,k+z+1) = p and 2(qη′ ,1+· · ·+qη′ ,k+z
′
) = q.

This implies ϕ
′
has the decomposition

ϕ
′

= ⊕ki=1(pη,i + qη,i)ρλi
⊕

2(z + z
′
+ 1)1.

Denote by θ(σ) the corresponding representation of Sp2n(R). The theta correspon-
dence gives the Harish-Chandra lifting of θ(σ) is

λη′ = (λ
′

1, · · · , λ
′

1︸ ︷︷ ︸
p
η
′
,1

, · · · , λ
′

k, · · · , λ
′

k︸ ︷︷ ︸
p
η
′
,k

, 0, · · · , 0︸ ︷︷ ︸
z+z′

;−λ
′

k, · · · , λ
′

k︸ ︷︷ ︸
q
η
′
,k

, · · · ,−λ
′

1, · · · ,−λ
′

1︸ ︷︷ ︸
q
η
′
,1

)

and the Langlands parameter ϕ of θ(σ) is given by

ϕ = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2(z + z
′
) + 1)1.

The component group Aϕ is a subgroup of Aϕ′ . Moreover, the Vogan parameter is

θV,V ′ (η) = η|Aϕ .

We summary our description of theta correspondence for symplectic-orthogonal dual
pairs in term of Langlands-Vogan parameters for limit of discrete series representations
in the following theorem.

Theorem 4.4. — (1) If π is a limit of discrete series representation of Sp(V ) with
Langlands-Vogan parameter (ϕ, η), where

ϕ = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2z + 1)1,

with pη,i, qη,i, z ∈ N, i = 1, · · · , k,
∑k
i=1(pη,i + qη,i) + z = n and ρλi is self-dual

irreducible representation of the Weil group WR of dimension 2. Then there
exists a unique pair of even integers (p, q) such that p+ q = 2n+ 2, and θV,V ′ (π)

is a limit of discrete series representation of O(p, q) with Langlands parameter
θV,V ′ (ϕ), where

θV,V ′ (ϕ) = ⊕ki=1(pη,i + qη,i)ρλi
⊕

(2z + 2)1.
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Moreover, we can regard the component group Aϕ as a subgroup of Aθ
V,V
′ (ϕ),

then
θV,V ′ (η)|Aϕ = η.

(2) Let V
′
be a (2n + 2)-dimensional real orthogonal space with signature (p, q),

where p, q are even integers, and let π
′
be a limit of discrete series representation

of O(V
′
) with Langlands-Vogan parameter (ϕ

′
, η
′
). Assume that θV ′ ,V (π

′
) 6= 0.

Then the Langlands-Vogan parameter (ϕ, η) of the representation θV ′ ,V (π
′
) of

Sp(V ) is given by
ϕ = ϕ

′
− 1, η = η

′
|Aϕ .

4.3. The Tempered Case. — In this section, we recall the Langlands-Vogan
parametrization of parabolic inductions (cf. Proposition 4.5) and the induction
principle of theta lifts (cf. Theorem 4.6), which allow us to reduce the proof of our
main theorem for the tempered case (cf. Theorem 4.8) to the case of limit of discrete
series (i.e. Theorem 4.1).

4.3.1. Langlands parametrization of parabolic inductions. — Let H be a real sym-
plectic group or a real orthogonal group. Let H0 be the subgroup of H which is the
same type of H, i.e. H0 = Sp(V0) or O(V

′

0 ) for some symplectic subspace V0 ⊂ V or
some orthogonal subspace V

′

0 ⊂ V
′
. Consider the parabolic subgroup P = MAN of

H with Levi factor
MA ∼= H0 ×GL2(R)s ×GL1(R)t

where s, t are non-negative integers. The parabolically induced representations

IndGPπ0 ⊗ τ ⊗ χ⊗ 1,

have a unique irreducible Langlands quotient, where π0 is a limit of discrete series
of H0, τ is a relative limit of discrete series representation of GL2(R)s and χ is
a quasi-character of GL1(R)t. Denote this unique irreducible Langlands quotient
representation by π = π(π0, τ, χ).

Let ϕ be the Langlands parameter associated to π with the decomposition

ϕ = ⊕ki=1ciρλi
⊕

(2z + 1)1
⊕

C,

where

1. λi are odd positive integers such that λ1 > · · · > λk > 0;
2. ρλi ’s are self-dual irreducible representations of the Weil group WR of dimension

2;
3. the ci, z are natural numbers for i = 1, · · · , k such that z +

∑k
i=1 ci = n;

4. C is the non self-dual part of ϕ.

Let ϕ0 = ⊕ki=1ciρλi
⊕

(2z+1)1 which is a Langlands parameter ofH0. Then Π(ϕ,H)

is the collection of all these Langlands quotients where π0 ranges over Π(ϕ0, H0).
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Proposition 4.5. — [26, Theorem 2.9] Taking Langlands quotients of parabolic
inductions gives a bijection between Π(ϕ,H) and Π(ϕ0, H0).

Recall that by [27, Theorem 6.3], we have a natural bijection between Π(ϕ,H)

(resp. Π(ϕ0, H0)) and the set of irreducible representations of the component group
Aϕ := π0(Cϕ) (resp. Aϕ0

) of ϕ (resp. ϕ0). The following diagram commutes

Π(ϕ0) Âϕ0

Π(ϕ) Âϕ

1:1 =

where the bijection on the left arrow is given by Proposition 4.5.

4.3.2. Induction principle of theta lift. — Let (G,G
′
) = (Sp2n(R),O(p, q)) be the

symplectic-orthogonal dual pair with p+ q = 2n+ 2 and ω the oscillator representation
for the dual pair (G,G′). There are parabolic subgroups P = MAN and P

′
= M

′
A
′
N
′

of G and G
′
with Levi factor

MA ∼= Sp2n′ (R)×GL2(R)s ×GL1(R)t

and
M ′A′ ∼= O(p

′
, q
′
)×GL2(R)s ×GL1(R)t

where 2n
′
+ 2s+ t = 2n and p

′
+ q

′
= 2n

′
+ 2.

Recall that we denote by χε,κ the quasi-character x 7→ sgn(x)
ε−1
2 |x|κ of GL1(R) for

ε ∈ {±1} and κ ∈ C. Let π = π(ρ, τ, χε,κ) be an irreducible admissible representation
of Sp2n(R), which is the unique irreducible quotient of the standard module of ρ⊗τ⊗χ
with ρ a limit of discrete series representation of Sp2n′ (R), τ = ⊗si=1τ(µi, νi) a relative
limit of discrete series of GL2(R)s and χ = ⊗ti=1χεi,κi a character of GL1(R)t . As in
Theorem 4.1, there is a unique pair of integers (p

′
, q
′
) with p

′
+ q

′
= 2n

′
+ 2 such that

θp′ ,q′ (ρ) is a non-zero limit of discrete series representation of O(p
′
, q
′
).

Theorem 4.6. — [21, Theorem 18] Let n, n
′
, p
′
, q
′
, s and t be non-negative integers

as above. Let εp,q = (ε1 · (−1)
p
′
−q
′

2 , ..., εt · (−1)
p
′
−q
′

2 ). For the irreducible admissible
representation π = π(ρ, τ, χε,κ) of Sp2n(R) as above, we have

θp,q(π) = θp,q(π)(θp′,q′(ρ), τ, χεp,q,κ).

Remark 4.7. — We explain briefly the proof of above theorem to see that our choice
of root datum doesn’t affect the result. Let π

′
be the proposed theta lift of π and

ρ
′

= θp′,q′(ρ). We can arrange that π is a quotient of I = IndGP (ρ⊗ τ ⊗χε,κ⊗1). Then
π′ is a constituent of I ′ = IndG

′

P ′(ρ
′ ⊗ τ∗ ⊗ χ∗ε,κ ⊗ 1), where ∗ is the contragredient

representation. By the induction principle, there is a non-zero G×G′-equivariant map
ω → I × I ′. Suppose π has a minimal K-type Λ. Then π occurs in the correspondence
and lifts to a constituent of I ′ containing the K-type Λ′ which corresponds to Λ. This
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is minimal K-type of π′, and hence a minimal K-type of I ′. Since the minimal K-types
of I ′ have multiplicity one, θp,q(π) = π′. As a result, our choice of root datum doesn’t
affect the result.

By Proposition 4.5 and the identification Âϕ = Âϕ0 , this induction principle implies
our main result in the tempered case.

Theorem 4.8. — Let V be a 2n-dimensional symplectic space over R.
(1) Let π be a tempered representation of Sp(V ) with Langlands-Vogan parameter

(ϕ, η). Then there exists a unique pair of even integers (p, q) satisfying p+ q = 2n+ 2

and a (2n+2)-dimensional orthogonal space V
′
with signature (p, q) such that θp,q(π) is

a tempered representation of O(p, q) with Langlands-Vogan parameter (θp,q(ϕ), θp,q(η)),
where θp,q(ϕ) = ϕ+ 1. Then the component group Aϕ is a subgroup of Aθp,q(ϕ), and
we have

θp,q(η)|Aϕ = η.

(2) Let V
′
be a (2n + 2)-dimensional real orthogonal space with signature (p, q),

where p, q are even integers, and let π
′
be a tempered representation of O(V

′
) with

Langlands-Vogan parameter (ϕ
′
, η
′
). Assume that θV ′ ,V (π

′
) 6= 0. Then the Langlands-

Vogan parameter (ϕ, η) of the tempered representation θV ′ ,V (π
′
) of Sp(V ) is given

by
ϕ = ϕ

′
− 1, η = η

′
|Aϕ .
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