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Abstract. Let p ≥ 3 be a prime. The hyper-algebraic elements in the p-adic
Mal’cev-Neumann field Lp form an algebraically closed subfield Lha

p . In this

article, we clarify the relations among the fields Lha
p , Qp and Cp. We introduce

two arithmetic invariants (hyper-tame index and hyper-inertia index) of hyper-
algebraic elements and study the relation between these invariants and classical
arithmetic invariants of p-adic algebraic numbers. Finally, we give a criterion

for hyper-algebraic elements to be tamely ramified over Qp.
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1. Introduction

Let p ≥ 3 be a prime throughout this article. The p-adic Mal’cev-Neumann
field Lp := W (Fp)((p

Q)), constructed in [Poo93], is the unique minimal spherically
complete extension of the field Cp of p-adic complex numbers. An element f ∈ Lp

can be written uniquely in the form

f =
∑
q∈Q

[rq]p
q, where [·] : Fp −→W (Fp) is the Teichmüller character

and supp(f) = {q ∈ Q : rq ≠ 0} a well-ordered subset of Q. Thus, an element
f =

∑
q∈Q[rq]p

q of Lp is completely determined by its support supp(f) and the set

{rq}q∈Q of its coefficients.
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The spherically complete condition is crucial in non-Archimedean functional
analysis (see [Sch02, Proposition 9.2] for a concrete example). In arithmetic geometry,
it also serves as an intermediate hypothesis in Scholze and Weinstein’s classification
of p-divisible groups over the ring OCp of integers of Cp (cf. [SW13, Proposition
5.2.5]). Besides the importance of spherical completeness, it is surprising that not
much arithmetic of Lp is investigated. We summarize several results from the
literature:

(1) In [Lam86], Lampert introduced the notion of p-adic Mal’cev-Neumann
series. In particular, he proved that the elements in Lp, satisfying that the
accumulating points of the support are all rational, form an algebraically
closed field (cf. [Lam86, Theorem 2]).

(2) In [Poo93], Poonen gave a rigorous construction of the field Lp and sys-
tematically studied various aspects of this field. In particular, a necessary
condition for an element of Lp to be algebraic over Qp, which is claimed by
Lampert in [Lam86, p. 282], is proved in [Poo93, Corollary 8].

(3) Based on an idea of Lampert, Kedlaya proposed a transfinite Newton
algorithm (cf. [Ked01, Proposition 1]) to prove the algebraic closeness of
Lp effectively, which is extracted in [WY21, Algorithm 1].

(4) In [Ked17, Theorem 13.4], Kedlaya gave a necessary and sufficient condition
for an element in Lp to be a p-adic complex number, in terms of the so-called
“p-quasi-automatic elements”.

(5) The truncated expansions of roots of unity in Lp are studied in [WY21,
Theorem 3.3] and [WY23, Theorem 1.6]. Based on these results, the
uniformizers of the p-adic false Tate curve extensionsKm,n

p := Qp

(
ζpm , p1/p

n)
for (m,n) ∈ ({2} × Z≥1)∪(Z≥3 × {1}) are constructed (cf. [WY21; WY24]).

(6) On the field Lp, we can define a canonical Frobenius map by the formula

φ :
∑
q∈Q

[rq]p
q 7−→

∑
q∈Q

[rpq ]p
q.

In [Efi24], Efimov proved that φ acts on the systems of pn-th roots of unity
by taking inverse. Note that one can view the complex conjugation as the
Frobenius automorphism of C, and the result of Efimov justifies that the
Frobenius φ can be viewed as the complex conjugation on Lp.

The purpose of this article is to answer several natural questions concerning the
arithmetic of the field Lp, which we make precise in the following.

1.1. Criterion of algebraicity. By [Lam86, p. 282] and [Poo93, Corollary 8], if
f ∈ Lp is algebraic over Qp, then it satisfies the following conditions:

(1) there exists a positive integer N such that supp(f) ⊆ 1
NZ[1/p];

(2) there exists a positive integer k such that rq ∈ Fpk for all q ∈ supp(f).

An element f ∈ Lp satisfying the above conditions is called hyper-algebraic. The set
Lha
p of hyper-algebraic elements in Lp forms an algebraically closed field containing

Qp. As a result, all p-adic algebraic numbers are hyper-algebraic, i.e. Qp ⊆ Lha
p .

Our first result is a clarification of relations among the fields Lha
p , Qp and Cp:

Theorem A (cf. Theorem 3.3). The field Lha
p is strictly larger than Qp, and it is

neither complete nor a subfield of Cp.

For a hyper-algebraic element α ∈ Lha
p , we introduce two new invariants of

α, called the hyper-tame index Tα and hyper-inertia index Fα, defined to be the
minimal integers N and k in the conditions given by Poonen respectively. For a
p-adic algebraic number α ∈ Qp, its hyper-algebraic invariants Tα and Fα are closely
related to its usual arithmetic invariants.
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Theorem B (cf. Theorem 4.1, Theorem 4.9). Let α be a p-adic algebraic number.

(1) The hyper-algebraic invariants Tα and Fα do not exceed [Qp(α) : Qp];
(2) Suppose Qp(α)/Qp is an abelian extension of degree n. Denote by fQp(α) the

local conductor of Qp(α) over Qp. Then
(a) If fQp(α) = 0, then Tα = 1 and Fα = n.
(b) If fQp(α) ≥ 1, then Tα | p− 1 and

Fα |

{
lcm(2, n), if fQp(α) = 1, 2;

lcm
(
2 · pfQp(α)−1, n

)
, if fQp(α) ≥ 3.

.

Remark 1.1. The proof of this result is based on our computation of the truncated
expansion of ζpn (cf. [WY21; WY23], and also see Example 2.13 for the precise
formula).

Remark 1.2. For α ∈ Lp, we denote by [C 1
p−1

(α)] the coefficient of index 1
p−1

of the canonical expansion of α. Based on the truncated expansion of ζpn (cf.
Example 2.13), we conjecture that for any integer n ≥ 2 and pn-th primitive root of
unity ζpn , there exists another pn-th primitive root of unity ζ ′pn with C 1

p−1
(α) = 0

such that ζp
n−1

pn =
(
ζ ′pn

)pn−1

.

If this conjecture holds1, then Fζpn = 2 for every n ≥ 2, and consequently Fα

divides lcm(2, n) for all ramified cases in the above theorem. See the proof of
Proposition 4.5 for more details. Note that this conjecture is true when n = 2 (cf.
Lemma 4.7).

Our third result is to give a criterion for hyper-algebraic element to be tamely
ramified over Qp:

Theorem C (cf. Theorem 4.11). Let α ∈ Lha
p be a hyper-algebraic element in

Lp. Then Qp(α) is tamely ramified over Qp if and only if supp(α) ⊆ 1
Tα

Z. In this

situation, we have Tα = eα, fα | Fα and Fα | c, where c := ordlcm(eα,pfα−1) p and
fα (resp. eα) is the inertia degree (resp. the ramification index) of the extension
Qp(α)/Qp.

Remark 1.3. It seems that our method for abelian and tamely ramified extensions
can hardly be generalized to general extensions. For these two special cases, the key
ingredient is to find an extension K over Qp(α), which is generated by certain more
“controllable” elements. In the abelian case, we use the cyclotomic extension by the
local Kronecker-Weber theorem while in the tamely ramified case, we used the radical
extension by Lemma 4.12. However, in general, we don’t know how to find such a
more “controllable” field.

1.2. Distinguishing roots of irreducible polynomial over Qp. The canonical
expansion of an element in Lp is fairly an analogy of the polar coordinate of a
complex number. In fact, the support supp(f) of f ∈ Lp corresponds to the modulus
of a complex number while the set {rq}q∈Q of coefficients of the expansion of f
corresponds to the argument of a complex number. As a result, such an expansion
can be used to make a distinction of roots of polynomials over Qp.

Given a p-adic algebraic number α, the usual arithmetic invariants (i.e. the
degree, ramification index and inertia degree of the extension Qp(α)/Qp) of α are
determined by its minimal polynomial over Qp. Thus, the usual arithmetic invariants
can not be used to distinguish the conjugates of α under the action of absolute

1We notice that in a recent preprint (cf. [Efi24]), Efimov claimed (ibid., Section 2) that his
main theorem (ibid.) implies Fζpn = 2 for every n ≥ 1. With his result, we can bypass the

aforementioned conjecture.
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Galois group of Qp. We observe that in general the minimal polynomial of α over
Qp is insufficient to determine the exact value of Tα and Fα. For example, the

elements α1 = p1/p and α2 = p1/p · ζp shares the same minimal polynomial T p − p
over Qp but Tα1

= Fα1
= 1 while Tα2

= p − 1 and Fα2
= 2 by Proposition 4.5.

Thus, it provides the possibility to make a distinction of root of a polynomial using
these two new invariants.

On the other hand, for a p-adic algebraic number α, its classical arithmetic
invariants are related to the hyper-algebraic invariants of all its conjugates. The
above example suggests that it makes sense to consider the hyper-algebraic invariants
of all conjugate of α at the same time. Let T(α) (resp. F(α)) be the set of hyper-tame
indices (resp. hyper-inertia indices) of all the conjugates of α, equipped with the
partial order defined by divisibility. A small-scale numerical experiment indicates
the following heuristic patterns:

(1) The degree of the minimal polynomial of α over Qp is always an upper
bound of F(α) in Z>0 with respect to the order defined by divisibility.

(2) The p-power-free part of the ramification index of the field Qp(α) over Qp

is always the unique minimal element in T(α).

1.3. Related works. We mention some potential approaches to study the canonical
expansion of general p-adic algebraic numbers in Lha

p :

(1) In [Ked17, Theorem 13.4], Kedlaya gives a characterization of the canonical
expansion of elements of OCp

in Lp in terms of the so-called “p-quasi-
automatic elements”. Extracting additional arithmetic information from
these logic-derived objects could offer a fresh perspective on comprehending
the hyper-algebraic invariants.

(2) In [Lis23], Lisinski uses a variant of Newton algorithm to give an upper

bound of the order type of supp(α) for element α in Fp((t)) ⊂ Fp((t
Q)).

Besides that, Lisinski also designs an algorithm to give upper bounds for
the characteristic p analog of hyper-algebraic invariants for elements in
Fp((t)) ⊂ Fp((t

Q)). It is possible to develop a mixed-characteristic analog

of Lisinski’s results for Qp ⊂ Lp and to compare with Theorem 4.1 of this
paper.

(3) Inspired by the pioneering work [Don+24] of Dong-He-Jin-Schremmer-Yu,
which using machine learning approach to study the geometry of affine
Deligne-Lusztig varieties, we wonder if the machine learning method can
help to identify hidden structures in the canonical expansion of a p-adic
algebraic number in Lha

p .
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Liu, Yicheng Tao and Hongteng Xu for the useful discussion. We also thank Will
Sawin for his answer on Mathoverflow (cf. [Saw24]), which motivates the formulation
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stage of this research. The first author is supported by the Fundamental Research
Funds for the Central Universities and the Research Funds of Renmin University of
China №20XNLG04, and The National Natural Science Foundation of China (Grant
№11971035).

2. Preliminaries on valued fields

2.1. Maximally complete fields and Mal’cev-Neumann fields. The main
objective of this subsection is to justify the notion of immediate maximally complete
extension of a valued field, in particular, of the field Cp of p-adic complex numbers.
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Definition 2.1. Let (F, v) be a valued field.

(1) Say (E,w) is an immediate extension of F if it is an extension of (F, v)
and has the same value group and residue field as F .

(2) Say (F, v) is maximally complete if it has no proper immediate extension.

Unsurprisingly, one has the following result

Proposition 2.2 ([Poo93, Proposition 6]).

(1) Maximally complete fields are complete.
(2) If a maximally complete field has divisible value group and algebraically

closed residue field, then itself is algebraically closed.

Remark 2.3.

(1) The proof of this Proposition, which is due to MacLane, is not effective, i.e.
it does not give an algorithm to construct a root of a given polynomial over
F .

(2) Kaplansky showed in [Kap42, Section 5] that there exist valued fields with
two immediate maximally complete extensions that are not isomorphic as
fields.

Definition 2.4. Let F be a valued field and (E1, w1), (E2, w2) be two extension of
F .

(1) Say E1 and E2 are analytically equivalent if there exists a F -isomorphism
of field i : E1 −→ E2 such that w2(i(x)) = w1(x) for any x ∈ E1.

(2) Say E1 embeds into E2 if E1 is analytically equivalent to a subfield of E2.

Theorem 2.5 ([Poo93, Corollary 6]). Every valued field F has an immediate
maximally complete extension. If F has divisible value group and algebraically closed
residue field, then the immediate maximally complete extension is unique up to
analytic equivalence.

A standard way to produce maximally complete fields is to consider the Mal’cev-
Neumann fields which we recall in the rest of this paragraph.

Definition 2.6 ([Poo93, Section 3]). Let R be a commutative ring and G be an
ordered group.

(1) For any f ∈ HomSet(G,R), we define the support of f to be

supp(f) = {g ∈ G : f(g) ̸= 0}.

(2) Define the set of Mal’cev-Neumann series over R with value group G to
be

R((G)) := {f ∈ HomSet(G,R) : supp(f) is well-ordered}.

By introducing a formal variable t, elements in R((G)) will also be written
as
∑

g∈G rgt
g, where rg ∈ R for all g ∈ G.

Proposition 2.7 ([Poo93, Lemma 1, Corollary 2]). Let R be a commutative ring
and G be an ordered group.

(1) With identity 1 · t0 and addition as well as multiplication given by∑
g∈G

bgt
g +

∑
g∈G

bgt
g :=

∑
g∈G

(ag + bg)t
g,
∑
g∈G

bgt
g ·
∑
g∈G

bgt
g :=

∑
g∈G

(∑
h∈G

ahbg−h

)
t,

R((G)) forms a commutative ring.
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(2) If R is a field, then so does R((G)). Moreover, with the map

v : R((G)) −→ G ∪ {∞}, f 7−→

{
min supp(f), if f ̸= 0

∞, if f = 0
,

R((G)) becomes a valued field with value group G and residue field R.

Note that charR((G)) = charR, we callR((G)) the equal-characteristic Mal’cev-
Neumann field over R with value group G, also denoted as R((tG)) with respect
to the formal variable t.

Theorem 2.8 ([Poo93, Proposition 3, Corollary 3, Proposition 5]). Let k be a
perfect field of characteristic p and G be an ordered group containing Z as a subgroup.
Besides that, let

N :=

∑
g∈G

rgt
g ∈W (k)((tG)) : for every g ∈ G,

∑
n∈Z

rg+np
n = 0

,

where W (k) is the ring of Witt vectors of k. Then

(1) N is a maximal ideal of W (k)((tG)), which makes W (k)((pG)) := W (k)((tG))/N
a field2, called the p-adic Mal’cev-Neumann field.

(2) Every element in W (k)((pG)) can be uniquely (and formally) written as∑
g∈G

[rg]p
g,

where rg ∈ k for all g ∈ G and [·] : k −→W (k) is the Teichmüller lift.
(3) For f =

∑
g∈G[rg]p

g, define the support of f to be

supp(f) = {g ∈ G : rg ̸= 0}.
Then the map

v : W (k)((G))/N −→ G ∪ {∞}, f 7→

{
min supp(f), if f ̸= 0

∞, if f = 0

makes W (k)((G))/N a mixed-characteristic valued field with value group G
and residue field k.

Theorem 2.9 ([Poo93, Theorem 1]). The equal-characteristic and p-adic Mal’cev-
Neumann fields are maximally complete.

Theorem 2.10 ([Poo93, Corollary 5, Corollary 6]). Let F be a valued field with

value group G and residue field k with char k = 0 or p. Let G̃ be a divisible group
that contains G.

(1) The field F embeds into the Mal’cev-Neumann field{
kalg((tG̃)), if charF = char k;

W (kalg)((pG̃)), if charF ̸= char k;

where kalg is an algebraic closure of k.

(2) If G = G̃ and k = kalg, then the Mal’cev-Neumann field{
k((tG)), if charF = char k;

W (k)((pG)), if charF ̸= char k;

is the unique (up to analytic equivalence) immediate maximally complete
extension of F (cf. Theorem 2.5).

2Intuitively speaking, W (k)((pG)) is obtained by replacing the formal variable t of elements in
W (k)((tG)) by the prime p.
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Example 2.11. It is well-known that Cp is not maximally complete (cf. [BS18,

Theorem 4.8, Theorem 6.7]). Since it has value group Q and residue field Fp, we can
apply Theorem 2.10 (2) to Cp, which gives its unique immediate maximally complete
extension

Lp := W (Fp)((p
Q)).

By applying Proposition 2.2 to Lp, one knows that Lp is complete and algebraically
closed. Moreover, one can show that Lp is much larger than Cp:

Lemma 2.12 ([Poo93, Corollary 9]). The field Lp has transcendence degree 2ℵ0

over Cp.

2.2. Basic properties of Lp. Compared to the unsatisfactoriness mentioned in
Remark 2.3 (1), Kedlaya proved34 the algebraic closeness of Lp by using a transfinite
Newton algorithm as following:

For a non-constant polynomial P (T ) =
∑n

i=0 an−iT
i ∈ Lp[T ], denote byNewt(P )

the Newton polygon of P , i.e. the lower boundary of the convex hull of the set of
points (i, vp(ai)) for i = 0, 1, · · · , n. We write sPmax for the slope of the segment of
Newt(P ) with the largest slope and mP

max the left endpoint of this segment. Besides
that, call

ResP (T ) :=

n−mP
max∑

k=0

Cvp(am)+sPmax(n−mP
max−k)(an−k)T

k

the residue polynomial of P , where for any s ∈ Q, the map Cs : Lp −→ Fp is given
by
∑

q∈Q[ζq]p
q 7−→ ζs.

We extracted Kedlaya’s proof into the following pseudocode:

Algorithm 1 transfinite Newton algorithm for Lp

INPUT: A non-constant polynomial P (T ) ∈ Lp[T ]
OUTPUT: A root of P (T ) in Lp

r ← 0,Φ(T )← P (T ) ▷ We denote the coefficient of T i in Φ as bn−i.
while Φ(0) ̸= 0 do ▷ This loop runs transfinitely.

c← any root of ResΦ(T ) in F̄p

r ← r + [c] · psΦmax

Φ(T )← Φ(T + [c] · psΦmax)
end while
return r

We refer to [WY21] for a full explanation of this algorithm.
Let r =

∑
ω[ζω]p

kω ∈ Lp, with ordinal ω runs through the well-ordered set
supp(r), be a root of P (T ) given by the above algorithm. For the convenience of later
discussion, we call rω =

∑
r<ω[ζω]p

kω the ω-th approximation of r, Pω = P (T + rω)
the ω-th approximation polynomial and ResPω

(T ) the ω-th residue polynomial.

Example 2.13 ([WY21; WY23]). Let ζ2(p−1) ∈W (Fp2) be a 2(p− 1)-th primitive
root of unity.

(1) There exist a p-th root of unity, whose canonical expansion in Lp is given by

ζp =

p−1∑
k=0

ζk2(p−1)

k!
p

k
p−1 +

∞∑
k=p

[ck]p
k

p−1 ,

3His proof is motivated by the work of Lampert (cf. [Lam86]).
4Actually Kedlaya’s proof can be adapted to any Mal’cev-Neumann field (equal-characteristic

or p-adic) with divisible value group and algebraically closed residue field.
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where ck ∈ Fp2 for all k ≥ p.
(2) For n ≥ 2, there exists a pn-th root of unity, whose (non-canonical) expansion

in Lp is partially given by

ζpn =

p−1∑
k=0

(−1)nk

k!
ζk2(p−1)p

k

pn−1(p−1) +

p−1∑
k=0

(−1)n(k+1)

k!
ζk+1
2(p−1)p

k+p

pn−1(p−1)

( ∞∑
l=n

p−1/pl

)

−
p−1∑
k=1

(−1)n(k+1)

k!

(
k∑

l=1

1

l

)
ζk+1
2(p−1)p

k+p

pn−1(p−1)

+
1

2
ζ22(p−1)p

2

pn−2(p−1)

( ∞∑
l=n

p−1/pl

)2

+
(−1)n

2
ζ32(p−1)p

2

pn−2(p−1)
− p−2

pn(p−1)

+ terms with higher valuation · · · .

3. Field of hyper-algebraic elements in Lp

3.1. Hyper-algebraic elements.

Definition 3.1. We call an element f =
∑

q∈Q[rq]p
q ∈ Lp hyper-algebraic, if it

satisfies:

(1) there exists a positive integer N such that supp(f) ⊆ 1
NZ[1/p];

(2) there exists a positive integer k such that rq ∈ Fpk for all q ∈ supp(f).

Denote by Lha
p the set of all hyper-algebraic elements in Lp.

By [Poo93, Corollary 8], we know that

Proposition 3.2. The set Lha
p forms an algebraically closed field. As a consequence,

all p-adic algebraic numbers are hyper-algebraic, i.e. Qp ⊆ Lha
p .

We clarify the relations among the fields Lha
p , Qp and Cp:

Theorem 3.3.

(1) The fields Lha
p and Cp do not contain each other. In particular, Lha

p contains

Qp as a proper subfield.

(2) The field Lha
p is not complete, and its completion is a proper subfield of Lp.

Proof. Consider the following element of Lha
p :

α =

∞∑
k=1

p
⌊
√

2·pk⌋
pk .

If α ∈ Cp, then there exists a p-adic algebraic number β ∈ Qp that vp(α− β) > 2.

This shows that the canonical expansion of β in Lha
p has the form

β =

∞∑
k=1

p
⌊
√

2·pk⌋
pk + terms with exponent greater than 2.

Thus, supp(β) has accumulation value
√
2. However, this is impossible: Lampert

showed in [Lam86, Theorem 2] that the set

A := {α ∈ Lp|{accumulation value of supp(α)} ⊂ Q}

is an algebraically closed field. Since the support of every p-adic rational number lies
in Z ⊂ Q, Qp is a subfield of A. On the other hand, β does not belong to A. This
contradiction shows that Lha

p is not contained in Cp. In particular, Lha
p contains Qp

as a proper subfield.
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To show that Lha
p is not complete and does not contain Cp, we can consider

the sequence
(∑n

k=1 p
k−1/k

)
n≥1

in Qp ⊆ Lha
p , which clearly converges in Cp but

has non-hyper-algebraic limit
∑∞

k=1 p
k−1/k in Lp: the p-power-free part of the

denominators of elements of its support is unbounded.

To prove Lha
p is not dense in Lp, we consider the element γ =

∑∞
k=1 p

− 1

k·pk in

Lp. If it lies in the completion of Lha
p , then there exists an element δ ∈ Lha

p that
vp(γ − δ) > 1. This leads to a contradiction if we consider the canonical expansion
of δ in Lha

p

δ =

∞∑
k=1

p
− 1

k·pk + terms with exponent greater than 1.

The denominators of elements of supp(δ) are unbounded, suggesting that δ is not
hyper-algebraic.

□

3.2. Hyper-tame index and hyper-inertia index.

Definition 3.4. Let θ =
∑

q∈Q[rq]p
q ∈ Lha

p be a hyper-algebraic element in Lp.

(1) Denote by Tθ the minimal positive integer e such that supp(θ) ⊆ 1
eZ[1/p].

We call it the hyper-tame index of θ.
(2) Denote by Fθ the minimal positive integer f such that rq ∈ Fpf for all

q ∈ supp(θ). We call it the hyper-inertia index of θ.

We call them the hyper-algebraic invariants of θ.

The following lemmas collect several basic properties of the hyper-tame and
hyper-inertia indices:

Lemma 3.5. Let α =
∑

q∈Q[rq]p
q be a hyper-algebraic element in Lp. Then one

has

(1) the hyper-algebraic invariants Tα and Fα of α are coprime to p;
(2) If the set of coefficients {rq}q∈Q is contained in a finite field Fps , then s is

a multiplier of Fα;
(3) If the support supp(α) is contained in the set 1

NZ[1/p] for some positive
integer N , then N is a multiplier of Tα;

Proof.

(1) For any positive integer N , the sets 1
pNZ[1/p] and 1

NZ[1/p] are identical.

(2) One has
{rq}q∈Q ⊆ FpFα ∩ Fps = Fpgcd(Fα,s) .

The result follows from the minimality of Fα.
(3) By the first assertion, we may assume that N is coprime to p. Suppose

the contrary that N = d · Tα + r with d ∈ Z≥1 and r ∈ {1, · · · ,Tα − 1}. Take
q ∈ supp(α). Then the inclusion q ∈ 1

Tα
Z[1/p] ∩ 1

NZ[1/p] allows us to write

q =
a1 · pv1
Tα

=
a2 · pv2

N
,

where a1, a2, v1, v2 ∈ Z with a1, a2 coprime to p. By comparing the p-adic valuation,
we get v1 = v2. Since

a2 · pv2 = (d · Tα + r) · q = d · a1 · pv1 + r · q = d · a1 · pv2 + r · q,
we obtain that q = a2−d·a1

r · pv2 ∈ 1
rZ[1/p], which contradicts the minimality of Tα.

□

Lemma 3.6. Let α, β ∈ Lha
p be two hyper-algebraic elements in Lp. Then one has
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(1) Tα+β | lcm(Tα,Tβ), Fα+β | lcm(Fα,Fβ).
(2) Tα·β | lcm(Tα,Tβ), Fα·β | lcm(Fα,Fβ). In particular if α is algebraic over

Qp and Qp(α) is unramified over Qp, then Tα·β | Tβ and Fα·β | lcm(fα,Fβ).
(3) T1/α = Tα, F1/α = Fα for α ̸= 0.

Proof. The first and the second assertions follow from the definition of addition and
multiplication on Lp. In particular if Qp(α) is unramified over Qp, then Qp(α) =
FracW (Fpfα ). As a result, every element in Qp(α) has the form

∑
k>>−∞[ζk]p

k,
where ζk ∈ Fpfα for all k. This shows that Tα = 1 and Fα = fα.

For the third assertion, the result is trivial when | supp(α)| = 1. Now we suppose
| supp(α)| ≥ 2 and write α = [ζ]pvp(α) − A for some ζ ∈ Fp with vp(A) > vp(α).
Then ζ ∈ FpFα , TA | Tα and FA | Fα. The result follows from the expansion

α−1 = [ζ−1]p−vp(α)
∞∑
k=0

(
[ζ−1]p−vp(α) ·A

)k
,

where vp
(
[ζ−1]p−vp(α) ·A

)
> 0, T[ζ−1]p−vp(α)·A | Tα and F[ζ−1]p−vp(α)·A | Fα. □

Corollary 3.7. For any positive integer e, f ≥ 1, the set

Lha
p (e, f) := {α ∈ Lha

p : Fα | f, Tα | e}

is a subfield of Lha
p . In particular, for any α ∈ Lha

p , we have Qp(α) ⊂ Lha
p (Tα,Fα).

4. p-adic algebraic numbers in Lha
p

The objective of this section is to investigate the hyper-algebraic invariants of
p-adic algebraic numbers.

4.1. Hyper-algebraic invariants of general p-adic algebraic numbers. As
observed in [Poo93, Corollary 8], there are two special types of automorphisms in
AutQp

(Lp):

(1) for any g ∈ GFp
:= Gal

(
Fp/Fp

)
, it can be viewed as an element of AutQp(Lp)

by the formula

g ·
∑
q∈Q

[rq]p
q =

∑
q∈Q

[g(rq)]p
q, for any

∑
q∈Q

[rq]p
q ∈ Lp.

(2) For any group homomorphism ξ : Q/Z −→ F×
p , the following formula

λξ :
∑
q∈Q

[rq]p
q 7−→

∑
q∈Q

[ξ(q)rq]p
q, for any

∑
q∈Q

[rq]p
q ∈ Lp

also gives an element of AutQp
(Lp).

Using these two types of automorphisms, we give a common upper bound of the
hyper-algebraic invariants:

Theorem 4.1. For every p-adic algebraic number α, one has Tα,Fα ≤ [Qp(α) : Qp].

Proof of Theorem 4.1 for hyper-inertia index. The action of GFp on Lp sends p-adic
algebraic numbers to their conjugates under the action of GQp

. As a result, one has

(4.1)
∣∣{g(α) : g ∈ GFp}

∣∣ ≤ [Qp(α) : Qp]

for any α ∈ Qp.

Suppose there exists α ∈ Qp that Fα > [Qp(α) : Qp]. Thus, there exists a rational
number q0 ∈ supp(α) such that the minimal finite field containing Cq0(α) is Fpr

with r > [Qp(α) : Qp]. Consider the set

{g(Cq0(α)) : g ∈ GFp} =
{
Cq0(α), Cq0(α)

p, · · · , Cq0(α)
pn

, · · ·
}
.
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The cardinality of this set is the minimal positive integer d that Cq0(α) = Cq0(α)
pd

,
which is the same as the minimal positive integer d that Cq0(α) ∈ Fpd . This shows

that r = d, i.e.
∣∣{g(Cq0(α)) : g ∈ GFp}

∣∣ = r. Since the following map is surjective

{g(α) : g ∈ GFp} −→ {g(Cq0(α)) : g ∈ GFp}, g(α) 7−→ Cq0(g(α)) = g(Cq0(α)),

we know that
∣∣{g(α) : g ∈ GFp

}
∣∣ ≥ r, which contradicts to (4.1). □

We prove Theorem 4.1 for the hyper-tame index in the rest of this subsection.
Denote by Set (resp. Ab) the category of sets (resp. abelian groups).

Definition 4.2. Let M be a subset of Q/Z. A map f : M −→ F×
p is called

admissible, if it can be extended to a (non necessarily unique) group homomorphism

f̃ ∈ HomAb

(
Q/Z,F×

p

)
.

For any α ∈ Lp, we denote by Homadm
Set

(
supp(α)/Z,F×

p

)
the set of all admissible

maps from supp(α)/Z to F×
p . If α =

∑
q∈Q[rq]p

q ∈ Qp and f ∈ Homadm
Set

(
supp(α)/Z,F×

p

)
,

then we have ∑
q∈Q

[f(q)rq]p
q =

∑
q∈Q

[f̃(q)rq]p
q ∈ Qp

for any extension f̃ ∈ HomAb

(
Q/Z,F×

p

)
. Note that for any group homomorphism

ξ : Q/Z −→ F×
p , λξ maps p-adic algebraic numbers to their conjugates under the

action of GQp
:= Gal

(
Qp/Qp

)
. This gives us an injective map:

Φα : Homadm
Set

(
supp(α)/Z,F×

p

)
−→ {g(α) : g ∈ GQp

}, f 7−→ λf̃ (α).

Lemma 4.3. Let A be a subset of Q and let ⟨A/Z⟩ be the subgroup of Q/Z generated
by A/Z. Then

(1) One has a bijection:

HomAb

(
⟨A/Z⟩,F×

p

)
−→ Homadm

Set

(
A/Z,F×

p

)
.

(2) If Homadm
Set

(
A/Z,F×

p

)
is a finite set, then A ⊆ 1

NZ[1/p], where N =∣∣∣HomAb

(
⟨A/Z⟩,F×

p

)∣∣∣.
Proof.

(1) By restricting the morphisms in HomAb

(
⟨A/Z⟩,F×

p

)
to A/Z, we obtain an

injection

ι : HomAb

(
⟨A/Z⟩,F×

p

)
−→ HomSet

(
A/Z,F×

p

)
.

We are left to show that the image of this map is exactly Homadm
Set

(
A/Z,F×

p

)
.

For any f ∈ Homadm
Set

(
A/Z,F×

p

)
, any extension f̃ ∈ HomAb

(
Q/Z,F×

p

)
of f has

image f by the injection ι. This implies that Homadm
Set

(
A/Z,F×

p

)
is contained in

the image of ι.

For any h = ι(a) ∈ HomSet

(
A/Z,F×

p

)
with some a ∈ HomAb

(
⟨A/Z⟩,F×

p

)
, a

extends uniquely to a group homomorphism ã ∈ HomAb

(
Q/Z,F×

p

)
since F×

p is

an injective object in Ab. Since ã |A/Z= a |A/Z= ι(a) = h, we know that h is
admissible.
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(2) The following proof is given by Lahtonen (cf. [Lah24]). LetN = |HomAb

(
⟨A/Z⟩,F×

p

)
|.

Suppose there exists a rational number q ∈ Q that q + Z ∈ ⟨A/Z⟩ and q /∈ 1
NZ[1/p].

We write q = u
pr·v , where u, v ∈ Z≥1, r ∈ Z≥0 with gcd(u, v) = gcd(p, v) = 1. Since

q /∈ 1
NZ[1/p], one knows that v does not divide N .

Notice that the element z′ := u
v + Z has order v in ⟨A/Z⟩ ⊆ Q/Z. Fix a v-th

primitive root ζv of unity in F×
p , then the map z′ 7−→ ζv induces a morphism d in

HomAb

(
⟨z′⟩,F×

p

)
with order v. Since F×

p is injective in Ab, d extends to a morphism

d̃ ∈ HomAb

(
⟨A/Z⟩,F×

p

)
. The order of d̃ in HomAb

(
⟨A/Z⟩,F×

p

)
, which divides N

by Lagrange’s theorem, is a multiplier of v. This contradicts to the assertion that
v does not divide N . Thus, ⟨A/Z⟩ ⊂ 1

NZ[1/p]/Z, which allows us to conclude the
proof.

□

Proof of Theorem 4.1 for hyper-tame index. We can set A in Lemma 4.3 (2) to be
supp(α), and we obtain supp(α) ⊆ 1

NZ[1/p], where

N =
∣∣∣HomAb

(
⟨supp(α)/Z⟩,F×

p

)∣∣∣.
By Lemma 4.3 (1), we have N =

∣∣∣Homadm
Set

(
supp(α)/Z,F×

p

)∣∣∣. Thus, Tα ≤ N ≤
[Qp(α) : Qp], as promised. □

Remark 4.4. One should not expect that Tα divides [Qp(α) : Qp] for general p-adic

algebraic number α. To see this, consider α = p1/p · ζp, which has hyper-tame degree
Tα = p− 1 while [Qp(α) : Qp] = p.

4.2. Hyper-algebraic invariants of abelian extensions. Let ζpn be the pn-th
root of unity in Example 2.13. It is easy to see that

α = ζp α = ζpn (n ≥ 2)
Fα 2 ≥ 2
Tα p− 1 ≥ p− 1

.

The following proposition gives a precise form of the above observations:

Proposition 4.5. For any integer n ≥ 1 and any pn-th primitive root of unity ζpn ,
we have Tζpn = p− 1 and

Fζpn

{
= 2, if n = 1, 2;

divides 2 · pn−2, if n ≥ 3.

The key to prove this proposition is the following lemma:

Lemma 4.6. Let α ∈ Lha
p with vp(α) = 0. Then there exists a p-th root β of α in

Lha
p (Tα, p · Fα). In particular, if C 1

p−1
(β) = 0, then β belongs to Lha

p (Tα,Fα).

Proof. We apply the transfinite Newton algorithm on the equation T p−α = 0 to get
a root β. Set β =

∑
ω[cω] · pkω , where the ordinal ω runs through the well-ordered

set supp(β). Recall that for any ordinal ω, let βω =
∑

ρ<ω[cρ] · pkρ and

Φω(T ) = (T + βω)
p − α = T p +

p−1∑
k=1

(
p

k

)
βk
ω · T p−k + βp

ω − α.
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The first step is easy: since β0 = 0 and Φ0(T ) = T p − α, the Newton polygon
Newt(Φ0) consists of a single horizontal segment with residue polynomial given by

ResΦ0
(T ) = T p − C0(α) ∈ FpFα [T ],

which splits in FpFα . This shows that β1 ∈ Lha
p (Tα,Fα) and vp(β1) = 0.

For any ω ≥ 1, since vp(βω) = vp(β1) = 0, we know that vp(
(
p
k

)
βk
ω) = 1 for

all k = 1, 2, · · · , p − 1. This implies that Newt(Φω) is determined by the point
(p, vp(β

p
ω − α)) for every ω ≥ 1.

Since kω ∈ Q increases monotonically with respect to the ordinal ω, we set ω0 to
be the minimal ordinal ρ that satisfies kρ ≥ 1

p−1 .

(1) Suppose ω < ω0 and βρ ∈ Lha
p (Tα,Fα) for every ρ ≤ ω. Then Newt(Φω)

consists of a single segment with slope kω = sΦω
max = 1

pvp(β
p
ω − α) < 1

p−1 .

1 2 p− 1 p

1 vp(β
p
ω − α)

Figure 4.1. Newt(Φω), 1 ≤ ω < ω0

Since βp
ω − α ∈ Lha

p (Tα,Fα) by Corollary 3.7, we know that

vp(β
p
ω − α) ∈ supp(βp

ω − α) ⊆ 1

Tα
Z[1/p].

This implies that kω = 1
pvp(β

p
ω − α) also belongs to 1

Tα
Z[1/p]. The residue

polynomial of Φω(T ) is given by

ResΦω
(T ) = T p + Cvp(β

p
ω−α)(β

p
ω − α),

where Cvp(β
p
ω−α)(β

p
ω −α) ∈ FpFα . Thus, any root of this residue polynomial

lies in FpFα . This shows that βω+1 ∈ Lha
p (Tα,Fα). Since the case of

limit ordinals is self-indicating, we can show by transfinite induction that
βω ∈ Lha

p (Tα,Fα) for all ω ≤ ω0.
(2) Now we deal with ω = ω0 + 1.

(a) If kω0
= s

Φω0
max = 1

p−1 , then Newt(Φω0
) consists of a single segment

with slope equals to

kω0 =
1

p− 1
=

1

p
vp(β

p
ω0
− α) ∈ 1

Tα
Z[1/p].

Since this segment contains the point (p− 1, 1), one knows that

ResΦω0
(T ) = T p + C0(βω0)

p−1T + Cvp(β
p
ω0

−α)(β
p
ω0
− α) ∈ FpTα [T ],

whose root lies in Fpp·Fα . In this case, one has βω0+1 ∈ Lha
p (Tα, p · Fα).
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(b) If kω0
= s

Φω0
max > 1

p−1 , then Newt(Φω0
) consists of two segments, where

the vertexes of the segment with maximal slope is given by (p− 1, 1)
and (p, vp(β

p
ω0
− α)). Thus,

kω0
=

vp(β
p
ω0
− α)− 1

p− (p− 1)
∈ 1

Tα
Z[1/p]

and one has

ResΦω0
(T ) = C0(βω0)

p−1T + Cvp(β
p
ω0

−α)(β
p
ω0
− α),

whose root lies in FpFα . In this case, one has βω0+1 ∈ Lha
p (Tα,Fα).

1 2 p− 1 p

1

p
p−1

Figure
4.2. Newt(Φω0

),
if kω0 = 1

p−1

1 2 p− 1 p

1

vp(β
p
ω − α)

Figure
4.3. Newt(Φω0

),
if kω0 > 1

p−1

(3) For the case of ω > ω0, we have kω > 1
p−1 . With the same calculation as

above, one can prove by transfinite induction that for any ordinal ω ≥ ω0+1,
βω ∈ Lha

p (Tα,Fβω0+1
).

The result follows. □

Additionally, we need the following auxiliary lemma:

Lemma 4.7. For any p2-th primitive root of unity ζp2 , there exists another p2-th
primitive root of unity ζ ′p2 and a p-th root of unity ξc (not necessarily primitive)

that ζp2 = ζ ′p2 · ξc and C 1
p−1

(ζ ′p2) = 0.

Proof. Fix a 2(p− 1)-th primitive root of unity ζ̃2(p−1). Let

W :=
{
ζ̃2k+1
2(p−1) : k ∈ N<p−1

}
.

By choosing ζ2(p−1) in the expansion of the p2-th primitive root of unity given
by Example 2.13 (see also [WY21, Theorem 3.3]) in W, we get p − 1 different

p2-th primitive roots of unity r0, r1, · · · , rp−2, satisfying [C 1
p(p−1)

(rk)] = ζ̃2k+1
2(p−1) and

[C 1
p−1

(rk)] = 0 for every k ∈ N<p−1.

Similarly, for every c ∈ {0} ∪W , there exists a p-th root of unity (not necessarily

primitive) ξc that vp

(
ξc − 1− c · p

1
p−1

)
> 1

p−1 . Thus, for any k ∈ N<p−1 and c ∈
{0}∪W , rk ·ξc is a p2-th primitive root of unity, satisfying [C 1

p(p−1)
(rk ·ξc)] = ζ̃2k+1

2(p−1)

and [C 1
p−1

(rk · ξc)] = c. This enumerates all p(p− 1) p2-th primitive roots of unity.

The result follows. □
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Proof of Proposition 4.5. The case of n = 1 follows immediately from [WY21,
Proposition 3.4].

Let ζp2 be any p2-th primitive root of unity. By Lemma 4.7, there exists another
p2-th primitive root of unity ζ ′p2 and a p-th root of unity ξc (not necessarily primitive)

that ζpp2 = ζ ′p2 · ξc and C 1
p−1

(ζ ′p2) = 0. By applying Lemma 4.6, we have

ζ ′p2 ∈ Lha
p (T(ζ′

p2
)p ,F(ζ′

p2
)p) = Lha

p (p− 1, 2).

Since ξc ∈ Lha
p (p − 1, 2), we know that ζp2 ∈ Lha

p (p − 1, 2). On the other hand,
by [WY21, Theorem 3.3], one has Tζp2

≥ p − 1 and Fζp2
≥ 2. This implies that

Tζp2
= p− 1 and Fζp2

= 2.

When n ≥ 3, we can set α = (ζpn)
p
in Lemma 4.6 inductively to get the result.

One should notice that when n ≥ 3, we no longer know if the analog of Lemma 4.7
holds for ζpn . Thus, the hyper-inertia index is multiplied by p when n increases by
1. □

Corollary 4.8. For any positive integer m = r · pvp(m) with gcd(r, p) = 1 and any
m-th primitive root of unity ζm, one has

(1) If vp(m) = 0, then Tζm = 1 and Fζm = ordr p.
(2) If vp(m) ≥ 1, then Tζm | p− 1 and

Fζm |

{
lcm(2, ordr p), if vp(m) = 1, 2;

lcm
(
2 · pvp(m)−1, ordr p

)
, if vp(m) ≥ 3.

Proof. It suffices to note that any r-th root of unity lies in W (Fpordr p). □

With the power of the local Kronecker-Weber theorem, we can generalize this
result to those p-adic algebraic numbers that generate abelian extensions over Qp:

Theorem 4.9. Let α ∈ Qp be a p-adic algebraic number with Qp(α)/Qp an abelian
extension of degree n. Denote by fQp(α) the local conductor of Qp(α) over Qp. Then

(1) If fQp(α) = 0, then Tα = 1 and Fα = n.
(2) If fQp(α) ≥ 1, then Tα | p− 1 and

Fα |

{
lcm(2, n), if fQp(α) = 1, 2;

lcm
(
2 · pfQp(α)−1, n

)
, if fQp(α) ≥ 3.

.

To prove this theorem, the following effective form of the local Kronecker-Weber
theorem is needed:

Lemma 4.10. Let K/Qp be an abelian extension of degree n with conductor fK
and let m = (pn − 1)pfK . Then K ⊆ Qp(ζm).

Proof. By [Gui18, Lemma 4.11] and its proof, there exists s ≥ 1 that

⟨ps⟩ × U
(fK)
Qp
⊆ NK/Qp

K×.

It follows that K ⊆ Qp

(
ζ(ps−1)pfK

)
by the proof of [Gui18, Theorem 13.27]. On the

other hand, we have K ⊆ Qp

(
ζ(pn−1)pvp(n)+2

)
by [KS22, Theorem 3.1]. Since

Qp

(
ζ(ps−1)pfK

)
∩Qp

(
ζ(pn−1)pvp(n)+2

)
⊆ Qp(ζm),

we have K ⊆ Qp(ζm). □
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Proof of Theorem 4.9. Let m = (pn − 1)pfQp(α) . By Lemma 4.10, we know that
α ∈ Qp(ζm).

Note ordpn−1 p = n. By Corollary 4.8, we know that

Tζm =

{
1, if fQp(α) = 0;

p− 1, if fQp(α) ≥ 1,

and

Fζm


= n, if fQp(α) = 0;

= lcm(2, n), if fQp(α) = 1, 2;

divides lcm
(
2 · pfQp(α)−1, n

)
, if fQp(α) ≥ 3.

Since α ∈ Qp(ζm) ⊆ Lha
p (Tζm ,Fζm), the result follows. □

4.3. Criterion for tamely ramified extensions.

Theorem 4.11. Let α ∈ Lha
p be a hyper-algebraic element in Lp. Then Qp(α) is

tamely ramified over Qp if and only if supp(α) ⊆ 1
Tα

Z. In this situation, we have

Tα = eα, fα | Fα and Fα | c, where c := ordlcm(eα,pfα−1) p and fα (resp. eα) is the
inertia degree (resp. the ramification index) of the extension Qp(α)/Qp.

The proof of this theorem relies on the following lemma:

Lemma 4.12. Let α ∈ Qp be a p-adic algebraic number with Qp(α) tamely ramified

over Qp. Then there exists a eα-th root ζe ∈ Fp of unity that

Qp(α) = Qpfα

(
p1/eα · [ζe]

)
,

where Qpfα := W (Fpfα )
[
1
p

]
is the maximal unramified extension of Qp in Qp(α).

Proof. Let OK be the ring of integer of K := Qp(α) with a uniformizer πK . Suppose
πeα
K = p · u, where u is a unit in O×

K .
Note that the polynomial T eα − u ∈ Fpfα [T ] has simple roots by the condition

gcd(eα, p) = 1. Hensel lemma implies that there is a eα-th root v of u in O×
K . If we

set π′
K := πK · v−1, then this element is also a uniformizer of K. Since π′

K is a eα-th

root of p, we have π′
K = p1/eα · [ζe] for some eα-th root ζe of unity in Fp.

□

Proof of Theorem 4.11. If supp(α) ⊆ 1
Tα

Z, we can write α =
∑+∞

k>>−∞[rk] · p
k

Tα ,

where rk ∈ FpFα for all k. Thus, α lies in QpFα

(
p

1
Tα

)
, where QpFα := W (FpFα )

[
1
p

]
is the unique unramified extension of Qp with residue field FpFα . Since Tα is coprime

to p (cf. Lemma 3.5), the field QpFα

(
p

1
Tα

)
is tamely ramified over Qp, implying

that Qp(α) is also tamely ramified over Qp.
Conversely, if Qp(α)/Qp is tamely ramified, then we have

Qp(α) = Qpfα

(
p1/eα · [ζe]

)
for some eα-th root ζe ∈ Fp of unity by Lemma 4.12. Let

α =

eα−1∑
k=0

ck ·
(
p1/eα · [ζe]

)k
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with ck ∈ Qpfα for k = 0, · · · , eα − 1. If we set ck =
∑

i>−∞

[
c
(k)
i

]
pi ∈ Qpfα with

c
(k)
i ∈ Fpfα , then

(4.2) α =

eα−1∑
k=0

∑
i>−∞

[
c
(k)
i · ζke

]
pi+k/eα .

This shows that supp(α) ⊆ 1
eα
Z. Thus,

supp(α) ⊆ 1

eα
Z ∩ 1

Tα
Z[1/p] ⊆ Z(p) ∩

1

Tα
Z[1/p] =

1

Tα
Z.

To prove the second assertion, notice that the inclusion α ∈ QpFα

(
p

1
Tα

)
implies

eα | Tα and fα | Fα. On the other hand, if any coefficient c
(k)
i ·ζke in (4.2) is non-zero,

then it is a lcm(eα, p
fα − 1)-th root of unity, i.e. c

(k)
i · ζke ∈ Fpc . As a result, one

conclude by Lemma 3.5 that α ∈ Lha
p (eα, c). □

Compared to Theorem 4.1, the constant c in Theorem 4.11 does provide a better
bound for the hyper-inertia index in the tamely ramified case:

Lemma 4.13. Let c := ordlcm(eα,pfα−1) p be the constant in Theorem 4.11. Then c
divides lcm(ϕ(eα), fα), where ϕ is Euler’s totient function.

Proof. Let e0 := eα
gcd(eα,pfα−1)

, then lcm(eα, p
fα − 1) = e0 · (pfα − 1), with e0 a factor

of eα that coprime to pfα − 1 and p. Chinese remainder theorem implies that

c = lcm(orde0 p, ordpfα−1 p) = lcm(orde0 p, fα).

Since e0 is a factor of eα, we have orde0 p divides ordeα p. The result follows from
Euler’s theorem. □
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