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Abstract. — Let p be a prime number. In this article, we prove that the p-adic Hahn series∑∞
k=1 p

−1/pk , which is the mixed-characteristic analogue of Abhyankar’s solution
∑∞

k=1 t
−1/pk to

the Artin-Schreier equation Xp −X − t−1 = 0 over Fp((t)), is a p-adic complex number, but not a
p-adic algebraic number. Based on this result, we formulate a conjecture about the possible order

type of the support of an algebraic p-adic Hahn series and prove that it is implied by a tentative
observation of Kedlaya.
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1. Introduction

In analogy with classical transcendental number theory, which concerns algebraicity over

Q, the study of function fields and p-adic fields has likewise developed into an important and

well-established branch of transcendental number theory.

When k is an algebraically closed field of characteristic 0, the Puiseux-Newton theorem states

that the algebraic closure of k((t)) is precisely the field of Puiseux series k
((
t1/∞

))
=
⋃∞

n=1 k
((
t1/n

))
.

In contrast, the structure of the algebraic closure becomes significantly more intricate when the

base field k has positive characteristic. For example, Chevalley showed in [Che51, p. 64] that the

Artin-Schreier equation

(a) Xp −X − t−1 = 0
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over Fp((t)) (and even Fp((t))) has no solution in the field of Puiseux series Fp

((
t1/∞

))
. On the

other hand, Abhyankar observed in [Abh56] that the formal series

(b) a :=

∞∑
k=1

t−1/pk

,

which lives in the field of Hahn series Fp

((
tQ
))

(cf. Example 2.5), is a root of the above equation.

This example demonstrates that the framework of Hahn series offers an appropriate setting for

investigating transcendental number theory over local fields of equal characteristic p > 0. In 2001,

Kedlaya gives a sufficient and necessary condition (cf. [Ked01b, Theorem 8, Corollary 9](1)) for

a Hahn series in Fp

((
tQ
))

(resp. Fp

((
tQ
))
) to be algebraic over Fp((t)) (resp. Fp((t))) with the

language of twist-recurrent sequences.

A comparable phenomenon is also observed in the mixed-characteristic context. As proved by

Lampert (cf. [Lam86]), Poonen (cf. [Poo93]) and Kedlaya (cf. [Ked01a]), for any prime number

p, the field OQ̆p

((
pQ
))

of p-adic Hahn series (cf . Example 2.5) with residue field Fp and value

group Q is the spherical completion of Qp, which is algebraically closed and complete. By passing

to Witt vectors, Kedlaya’s criterion generalizes to verify whether a p-adic Hahn series lies in the

completed integral closure of OQ̆p
, i.e. OCp (cf. Theorem 3.1). For example, we consider the

p-adic analogue of Abhyankar’s series (b):

A :=

∞∑
k=1

p−1/pk

∈ OQ̆p

((
pQ
))
.

Kedlaya’s result allows us to prove

Theorem A (cf. Theorem 3.1). — The p-adic Hahn series A lies in Cp.

Owing to the completeness nature of Witt vectors, Kedlaya’s criterion is unable to ascertain

whether a p-adic Hahn series is algebraic over Qp. There are several necessaries conditions for a

p-adic Hahn series to be algebraic over Qp. For example, in [Lam86], [Ked01a] and [WY24], it is

shown that if a p-adic Hahn series
∑

q∈Q[cq]p
q is algebraic over Qp, then

1. There exists r ∈ N≥1 such that cq ∈ Fpr for all q ∈ Q;

2. There exists N ∈ N≥1 such that the support {q ∈ Q | cq ̸= 0} is contained in 1
NZ[p−1];

3. The accumulation points of the support {q ∈ Q | cq ̸= 0} are rational numbers.

Note that the element A satisfies all above necessary conditions, and it is even p-quasi-automatic

in the sense of Kedlaya [Ked17]. In contrast to Abhyankar’s observation regarding the algebracity

of a, we establish the following result, which is counterintuitive:

Theorem B (cf. Theorem 4.4). — The p-adic Hahn series A is transcendental over Qp.

This finding highlights the fundamental distinction between transcendental number theory in

the context of local fields with equal characteristic p > 0 and that pertaining to local fields of

mixed characteristic (0, p).

Due to the inherent difficulty in establishing a general criterion for the transcendence of p-adic

Hahn series over Qp, more tractable problems are proposed. For example, Lampert asked in

[Lam86] about the possible order type of the support of an Qp-algebraic p-adic Hahn series.

Inspired by the transcendence of A, which has bounded but infinite support, we formutate the

following conjecture:

(1)See also [Ked17, Remark 2.9] for the critical remark on [Ked01b, Theorem 8].



ON THE p-ADIC TRANSCENDENCE OF
∑∞

k=1 p−1/pk 3

Conjecture C (cf. Conjecture 5.1). — If a p-adic algebraic number has bounded support,

then its support is finite.

We will prove in Proposition 5.2 that this conjecture is implied by a hypothetical observation

by Kedlaya in [Ked01a]. It is anticipated that this conjecture will constitute a foundational

advancement in the study of the Qp-transcendence properties of p-adic Hahn series.

2. Preliminaries on Hahn series

To make this article self-contained, we briefly recall some basic facts about Hahn series.

Definition 2.1 ([Poo93, Section 3]). — Let R be a commutative ring and G be an ordered

group.

1. For any f ∈ HomSet(G,R), we define the support of f to be

Supp(f) = {g ∈ G : f(g) ̸= 0}.

2. Define the set of Hahn series over R with value group G to be

R((G)) := {f ∈ HomSet(G,R) : Supp(f) is well-ordered}.

By introducing a formal variable t, elements in R((G)) will also be written as
∑

g∈G rgt
g,

where rg ∈ R for all g ∈ G.

Proposition 2.2 ([Poo93, Lemma 1, Corollary 2]). — Let R be a commutative ring and G

be an ordered group.

1. With identity 1 · t0 and addition as well as multiplication given by

∑
g∈G

agt
g +

∑
g∈G

bgt
g :=

∑
g∈G

(ag + bg)t
g,
∑
g∈G

agt
g ·
∑
g∈G

bgt
g :=

∑
g∈G

(∑
h∈G

ahbg−h

)
t,

R((G)) forms a commutative ring.

2. If R is a field, then so does R((G)). Moreover, with the map

v : R((G)) −→ G ∪ {∞}, f 7−→

{
min Supp(f), if f ̸= 0

∞, if f = 0
,

R((G)) becomes a valued field with value group G and residue field R.

Note that charR((G)) = charR, we call R((G)) the equal-characteristic field of Hahn

series over R with value group G, also denoted as R
((
tG
))

with respect to the formal variable t.

Proposition 2.3 ([Poo93, Proposition 3, Corollary 3, Proposition 5])

Let k be a perfect field of characteristic p and G be an ordered group containing Z as a

subgroup. Besides that, let

N :=

∑
g∈G

rgt
g ∈ W (k)

((
tG
))
: for every g ∈ G,

∑
n∈Z

rg+np
n = 0

,

where W (k) is the ring of Witt vectors of k. Then
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1. N is a maximal ideal of W (k)
((
tG
))
, which makes W (k)

((
pG
))

:= W (k)
((
tG
))
/N a field(2),

called the p-adic field of Hahn series.

2. Every element in W (k)
((
pG
))

can be uniquely written as∑
g∈G

[rg]p
g,

where rg ∈ k for all g ∈ G and [·] : k −→ W (k) is the Teichmüller lift. We call this the

standard expansion of the element.

3. For f =
∑

g∈G[rg]p
g, define the support of f to be

Supp(f) = {g ∈ G : rg ̸= 0}.

Then the map

v : W (k)((G))/N −→ G ∪ {∞}, f 7→

{
min Supp(f), if f ̸= 0

∞, if f = 0

makes W (k)((G))/N a mixed-characteristic valued field with value group G and residue field

k.

The most important property of the field of Hahn series is the following:

Theorem 2.4 (cf. [Poo93, Theorem 1, Corollary 4, Corollary 6])

Let F be an equal-characteristic (resp. mixed-characteristic) valued field with divisible value

group G and algebraically closed residue field k. Then the equal-characteristic (resp. p-adic) field

of Hahn series k
((
tG
))

(resp. W (k)
((
pG
))
) is the unique (up to isomorphisms of valued field)

minimal spherically complete extension of F . Moreover, it is algebraically closed and complete.

The following examples are the fields of Hahn series used in this article:

Example 2.5. — Let F = Fp((t)) (resp. Q̆p = W (Fp)[p
−1]), which has value group Q and

residue field Fp. Then the field of equal-characteristic (resp. p-adic) Hahn series Fp

((
tQ
))

(resp.

OQ̆p

((
pQ
))

= W (Fp)
((
pQ
))
) is the spherical completion of F with residue field and value group

unchanged, which is algebraically closed and complete.

Remark 2.6. — To simplify the statement, we will simply call OQ̆p

((
pQ
))

the p-adic Hahn

series without specifying the residue field and value group.

We end this section by proving the following lemma, which will be used in the proof of

Theorem 4.4:

Lemma 2.7. — Every p-adic Hahn series can be uniquely written as
∑

q∈Q∩[0,1) cq · pq, with
cq ∈ Q̆p for all q.

Proof. — Notice that Q ∩ [0, 1) is a set of representatives of Q/Z, every p-adic Hahn series∑
q∈Q[aq]p

q can be written as∑
q∈Q

[aq]p
q =

∑
q∈Q∩[0,1)

∑
n∈Z

[aq+n]p
q+n =

∑
q∈Q∩[0,1)

pq

(∑
n∈Z

[aq+n]p
n

)
,

where
∑

n∈Z[aq+n]p
n ∈ Q̆p for all q.

(2)Intuitively speaking, W (k)
((
pG

))
is obtained by replacing the formal variable t of elements in W (k)

((
tG

))
by

the prime p.
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For the uniqueness, for any p-adic Hahn series
∑

q∈Q[aq]p
q, write∑

q∈Q

[aq]p
q =

∑
q∈Q∩[0,1)

cq · pq =
∑

q∈Q∩[0,1)

dq · pq

with cq, dq ∈ Q̆p for all q ∈ Q ∩ [0, 1). Then we have

0 =
∑

q∈Q∩[0,1)

(cq − dq)p
q.

If we write cq − dq =
∑

n∈Z[sq,n]p
n ∈ Q̆p with sq,n ∈ Fp for all n and for all q ∈ Q ∩ [0, 1), then

(c) 0 =
∑

q∈Q∩[0,1)

∑
n∈Z

[sq,n]p
q+n.

Since q+n are all distinct for different pairs (q, n), (c) is the standard expansion of 0 ∈ OQ̆p

((
pQ
))
.

Hence sq,n = 0 for all q ∈ Q ∩ [0, 1) and n ∈ Z, i.e. cq = dq for all q ∈ Q ∩ [0, 1).

3. A is a p-adic complex number

Although the summation
∑∞

k=1 p
−1/pk

is not interpreted as the p-adic limit (which does not

exist) of the suspicious sequence
{∑n

k=1 p
−1/pk

}
n≥1

⊂ Qp, we can still prove that it is a p-adic

limit of a sequence in Qp. This is a direct consequence of the following result of Kedlaya:

Theorem 3.1 (cf. [Ked17, Theorem 13.4]). — The ring OCp
equals to the following sets:

1. the completion of the image of the p-quasi-automatic elements (cf. [Ked17, Definition 6.3,

Definition 13.1]) of W
(
Fp

)((
tQ
))∧

under the projection

W
(
Fp

)((
tQ
))∧ −→ OQ̆p

((
pQ
))
.

2. the completion of the following set:∑
q∈Q

[cq]p
q ∈ OQ̆p

((
pQ
))∣∣∣∣∣∣
∑
q∈Q

cq · tq ∈ ÔL

,

where ÔL is the completion of the integral closure of FpJtK in Fp

((
tQ
))
.

Remark 3.2. — In the original statement of [Ked17, Theorem 13.4], the ring ÔL (resp. OCp
)

is described as the “completed integral closure” of the field Fp((t)) (resp. W
(
Fp

)
[p−1] = Q̆p). By

comparing [Ked17, Theorem 11.12] with [Ked17, Definition 6.3], we believe that the “completed

integral closure” of a valued field F in a larger valued field E in [Ked17] means the completion of

the integral closure of OF in E, rather than the completion of the integral closure (which is also

the algebraic closure) of F in E, which is the literal interpretation of “completed integral closure”.

As an application, we can prove that A can be approximated by a Cauchy sequence in Qp:

Proposition 3.3. — The p-adic Hahn series A =
∑∞

k=1 p
−1/pk

lies in Cp.

Proof. — One can verify by direct calculation that the Hahn series
∑∞

k=1 t
1−1/pk

is a root of the

polynomial

Xp − tp−1X − tp−1 ∈ FpJtK[X].

By Theorem 3.1, we conclude that p · A =
∑∞

k=1 p
1−1/pk

lies in Cp, and the result follows.
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Remark 3.4. — The proof of Proposition 3.3 is not effective, i.e. it does not provide an

explicit Cauchy sequence in Qp that converges to A. By Kedlaya’s transfinite Newton algorithm

(cf. [Ked01a, Theorem 1], [WY21, Section 2.2]), we mention two examples of p-adic algebraic

numbers, whose p-adic distance to A is less than 1:

1. There exists a root α of the Artin-Schreier polynomial Xp −X − p−1 ∈ Qp[X], which is the

p-adic analogue of (a), such that

α =

∞∑
k=1

p−1/pk

+ p1/p−1/p2

+ terms with higher valuation,

i.e. vp(α− A) = 1
p − 1

p2 .

2. When p ≥ 3, then [WY23] shows that for any integer n ≥ 2, there exists a pn-th root of

unity ζpn with expansion

ζpn =

p−1∑
k=0

ζk2(p−1)

[k!]
p

k

pn−1(p−1) + ζ2(p−1)p
1

pn−2(p−1)

∞∑
k=n

p−1/pk

+ ζ22(p−1)p
1

pn−2(p−1)
+ 1

pn(p−1) + terms with higher valuation,

where ζ2(p−1) is a fixed primitive 2(p− 1)-th root of unity. If we set

βn :=
(
ζ22(p−1) · p

1

pn−2(p−1)

)−1

·

(
ζpn −

p−1∑
k=0

ζk2(p−1)

[k!]
p

k

pn−1(p−1)

)
+

n−1∑
k=1

p−1/pk

,

then

vp(βn − A) =
1

pn(p− 1)
.

4. Qp-transcendence of A

To show that A is transcendental over Qp, we prove by contradiction by assuming that A is

the root of a polynomial f with Zp coefficients. Our strategy is straightforward: we are going to

show that there are some terms in the multinomial expansion of the leanding term of f(A) is

impossible to be cancelled out by any other terms in the whole expansion. To rigiously carry out

this idea, we need some preparations.

Definition 4.1. — Let I :=
⊕

N>0
N.

1. Let λ : I −→ Q, (ak)k≥1 7−→
∑∞

k=1 −
ak

pk .

2. Let Σ: I −→ N, (ak)k≥1 7−→
∑∞

k=1 ak.

3. Let κ : I −→ N, (ak)k≥1 7−→ max{k ≥ 1 | xk > p − 1}, where we set max ∅ = 0. This

always makes sense since for every a = (ak)k≥1 ∈ I, there are only finitely many k’s with

ak ̸= 0.

4. We call an element a ∈ I reduced, if κ(a) = 0, i.e. 0 ≤ ak ≤ p− 1 for all k ≥ 1.

5. For any a, b ∈ I, write a ∼ b if λ(a)− λ(b) ∈ Z. It is easy to see that ∼ is an equivalence

relation.

With above notations, we can write the multinomial expansion of Ai, i = 0, · · · , n+ 1 as

(d) Ai =
∑
k∈I

Σ(k)=i

si

(
i

k

)
pλ(k).
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Intuitively, the “cancellation” could only happen between terms pλ(a) and pλ(b) with a ∼ b. Hence

we need to understand the equivalence classes of ∼ in I. The following lemma shows that each

equivalence class contains a unique reduced element, which plays the role of the “canonical

representative” of the equivalence class.

Lemma 4.2. —

1. For every a ∈ I, there exists a unique reduced element ared ∈ I such that a ∼ ared.

2. One has Σ(ared) ≤ Σ(a). The equality holds if and only if a is reduced, i.e. a = ared.

Proof. — We prove by induction on κ(a) that there exists a reduced element ared ∈ I such that

a ∼ ared and Σ(ared) ≤ Σ(a).

If κ(a) = 0, then we can take ared = a. Suppose that κ(a) = n+ 1 for certain n ∈ N and the

claim holds for all elements in I with κ-value not greater than n.

Since an+1 > p− 1, we can write an+1 = r + p · d, with r ∈ {0, · · · , p− 1} and d ∈ N>0. Let

a′ := (a′k)k≥1 ∈ I be defined as follows:

a′k :=


ak, if k ̸= n, n+ 1;

r, if k = n+ 1;

an + d, if n ≥ 1 and k = n.

Then one can check by direct calculation that

λ(a) = −r + p · d
pn+1

+
∑

k ̸=n+1

−ak
pk

= − r

pn+1
− an + d

pn
+

∑
k ̸=n,n+1

−ak
pk

= λ(a′)

when n ≥ 1, and

λ(a) = −r + p · d
p

+
∑
k≥2

−ak
pk

= λ(a′)− d

when n = 0. In both cases, we have a ∼ a′ and Σ(a′) ≤ n. By the induction hypothesis, there

exists a reduced element a′red ∈ I such that a′ ∼ a′red and Σ(a′red) ≤ Σ(a′). Hence we have a ∼ a′red
and Σ(a′red) ≤ Σ(a). This finishes the proof of the existence.

Now take two reduced elements x and y with x ∼ y. Since

−1 = −
∞∑
k=1

p− 1

pk
< λ(x), λ(y) ≤ 0,

the condition x ∼ y implies that λ(x) = λ(y). By viewing λ(x) and λ(y) as floating point numbers

in base p, a digit-by-digit comparison shows that they are equal. This finishes the proof of the

uniqueness.

For the last statement, suppose that Σ(ared) = Σ(a). If Σ(a) = 0, then a = ared = (0, 0, · · · ).
Now we assume Σ(a) > 0 and a is not reduced. Then the construction in the first part of the

proof shows that there exists a′ ∈ I with a′ ∼ a and Σ(a′) < Σ(a). As a result, we obtain

Σ(ared) ≤ Σ(a′) < Σ(a), which contradicts the assumption.

Corollary 4.3. — For every a, b ∈ I, a ∼ b if and only if ared = bred.

Now we are ready to prove the main result of this article:

Theorem 4.4. — The p-adic Hahn series A =
∑∞

k=1 p
−1/pk

is transcendental over Qp.

Proof. — Suppose the contrary that there exists n ∈ N and s0, · · · , sn+1 ∈ Zp such that

s0 + s1A+ · · ·+ snA
n + sn+1A

n+1 = 0,
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with s0 and sn+1 nonzero. The multinomial theorem implies that

0 =

n+1∑
i=0

siA
i =

n+1∑
i=0

∑
k∈I

Σ(k)=i

si

(
i

k

)
pλ(k) =

∑
k∈I

Σ(k)≤n+1

sΣ(k)

(
Σ(k)

k

)
pλ(k).

If we group the terms on the right hand side according to the equivalence classes of ∼, we obtain

(e)

0 =
∑

kred∈I
kred reduced


∑
k∈I

Σ(k)≤n+1
k∼kred

sΣ(k)

(
Σ(k)

k

)
pλ(k)



=
∑

kred∈I
kred reduced

pλ(kred)+δ0


∑
k∈I

Σ(k)≤n+1
k∼kred

sΣ(k)

(
Σ(k)

k

)
pλ(k)−λ(kred)−δ0

,

where

δ0 =

{
0, if kred = (0, 0, · · · );
1, otherwise.

Observe that for different reduced elements kred ∈ I, the values λ(kred) + δ0 ∈ [0, 1) are all

distinct, and if k ∼ kred, then λ(k)− λ(kred)− δ0 ∈ N. Hence Lemma 2.7 allows us to conclude

from (e) that

(f)
∑
k∈I

Σ(k)≤n+1
k∼kred

sΣ(k)

(
Σ(k)

k

)
pλ(k)−λ(kred) = 0

for every reduced element kred ∈ I. If we take the reduced element

k∗ := (

n+1 times︷ ︸︸ ︷
1, 1, · · · , 1, 0, · · · , ) ∈ I,

then for every k ∈ I with Σ(k) ≤ n+1 and k ∼ k∗, Lemma 4.2 implies that Σ(k) = Σ(k∗) = n+1

and consequently k = k∗. Hence (f) can be specialized to the case of kred = k∗ as

sn+1

(
n+ 1

k∗

)
= sn+1 · (n+ 1)! = 0,

which contradicts the assumption that sn+1 is nonzero.

Remark 4.5. — One does not need to worry about the well-definedness of any of the infinite

sums above, since for every exponent with value of the form λ(k), there are only finitely many

terms contributing to it (cf. [Poo93, Lemma 1]).

Remark 4.6. — After some necessary generalization of λ, Σ and κ, the same idea can potentially

be applied to show the Qp-transcendence of more general p-adic Hahn series.
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5. Order type of p-adic algebraic numbers

In [Lam86], Lampert asked about the possible order type of the support of the expansion of

p-adic algebraic numbers as p-adic Hahn series. Kedlaya showed in [Ked01a, Section 4] that the

order type can not exceed ωω. He also made the following remark at the end of same section:

In fact, it is entirely possible that the answer to Lampert’s question

is that only finite orders, ω and ωω can occur.

We simply call it Kedlaya’s prediction. Note that this prediction indicates that there does

not exist any p-adic algebraic number with bounded support of order type ω: if α =
∑∞

k=0[ck]p
rk ∈

OQ̆p

((
pQ
))

is a p-adic algebraic number with diam(Supp(α)) < N for certain positive integer N ,

then
α

1− pN
=

∞∑
k=0

[ck]p
rk +

∞∑
k=0

[ck]p
rk+N +

∞∑
k=0

[ck]p
rk+2N + · · ·

is a p-adic algebraic number with order type ω2, which contradicts Kedlaya’s prediction.

Since currently no p-adic algebraic number with bounded support of infinite order type is

known, and even simple p-adic Hahn series like A is transcendental over Qp, we raise the following

conjecture about the order type of p-adic algebraic numbers:

Conjecture 5.1. — If a p-adic algebraic number has bounded support, then its support is finite.

In fact, this conjecture is also implicated by Kedlaya’s prediction:

Proposition 5.2. — Kedlaya’s prediction implies Conjecture 5.1.

Proof. — Suppose x is a p-adic algebraic number with bounded support of order type α. Let N

be a positive integer such that diam(Supp(x)) < N . Similar to the argument above, we can show

that
x

1− pN
=

∞∑
t=0

x · pNt

is a p-adic algebraic number with order type α · ω. If we write α as its Cantor normal form (cf.

[Sie65, Chapter XIV, §19, Theorem 2])

α = ωβ1c1 + ωβ2c2 + · · ·+ ωβkck,

where β1 > β2 > · · · > βk ≥ 0 are ordinals and ci are positive integers, then the Cantor normal

form of α · ω is ωβ1+1 (cf. [Sie65, Chapter XIV, §19, Exercise 4]). By Kedlaya’s prediction, we

split the proof into 3 cases:

1. If α · ω is finite, then clearly α = 0;

2. If α · ω = ω, then β1 = 0, and consequently α = c1 is finite;

3. If α · ω = ωω, then ωβ1+1 = ωω, which is impossible since ω is not a successor ordinal.

References

[Abh56] S. Abhyankar. “Two Notes on Formal Power Series”. In: Proceedings of the American
Mathematical Society 7.5 (1956), pp. 903–905. doi: 10/bpq593.

https://doi.org/10/bpq593


ON THE p-ADIC TRANSCENDENCE OF
∑∞

k=1 p−1/pk 10

[Che51] C. Chevalley. Introduction to the Theory of Algebraic Functions of One Variable.
Vol. 6. Mathematical Surveys and Monographs. Providence, Rhode Island: American
Mathematical Society, 1951. doi: 10/p7m5.

[Ked01a] K. S. Kedlaya. “Power Series and p-Adic Algebraic Closures”. In: Journal of Number
Theory 89.2 (2001), pp. 324–339. doi: 10/d3jvgq.

[Ked01b] K. S. Kedlaya. “The Algebraic Closure of the Power Series Field in Positive Character-
istic”. In: Proceedings of the American Mathematical Society 129.12 (2001), pp. 3461–
3470. doi: 10/dhmqnq.

[Ked17] K. S. Kedlaya. “On the Algebraicity of Generalized Power Series”. In: Beiträge zur
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